Inducible Loss of the Fanconi Anemia Pathway in iPSC Causes Rapid Cell Cycle Arrest and Apoptosis through ATM/ATR and p53 Signaling

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3528-3528
Author(s):  
Timothy M Chlon ◽  
Elizabeth E Hoskins ◽  
Sonya Ruiz-Torres ◽  
Christopher N Mayhew ◽  
Kathryn A Wikenheiser-Brokamp ◽  
...  

Abstract As the source of all cells in the developing embryo proper, embryonic stem cells (ESC) bear the unique responsibility to prevent mutations from being propagated throughout the entire organism and the germ line. It is likely for this reason that ESC and induced pluripotent stem cells (iPSC) maintain a dramatically lower mutation frequency than cultured somatic cells. Multiple mechanisms for this enhanced genomic surveillance have been proposed, including hypersensitivity of DNA damage response signaling pathways and increased activity of error-free DNA repair pathways, such as homologous recombination. However, the effect of loss of function of DNA repair pathways in these cells remains poorly understood. The Fanconi Anemia (FA) pathway is a DNA repair pathway that is required for the repair of DNA interstrand crosslink damage and also promotes repair of DNA double-strand breaks by homologous recombination . Genetic defects in this pathway cause a disease characterized by bone marrow failure and extreme cancer incidence. Several recent studies have revealed that the FA pathway is required for efficient somatic cell reprogramming to iPSC and suggest that FA cells undergo cell death during this process. Another recent study found that the growth of FA patient-specific iPSC was attenuated with a G2/M arrest when compared to control iPSC, suggesting that these cells arrest upon failed DNA repair. In this study, we sought to determine the effects of acute loss of function of the FA pathway in iPSC through the generation of FA patient-derived iPSC with inducible complementation of the defective FA gene. Fibroblasts were cultured from skin biopsies of multiple FA patients and transduced with a lentiviral vector expressing the complementing FA gene product under DOX-inducible control. Cells were then reprogrammed to iPSC using episomal transfection. These cells formed iPSC colonies only when reprogramming was carried out in the presence of DOX, confirming that the FA pathway is required for efficient reprogramming. Once cell lines were obtained, DOX-dependent FA functionality was verified based on FANCD2 monoubiquitination and nuclear focus formation after treatment with DNA damaging agents. We then cultured the iPSC for extended periods of time in the presence and absence of DOX. Interestingly, the cultures underwent profound cell death and cell cycle arrest within 7 days of DOX-withdrawal and completely failed to expand after one passage. EdU cell cycle analysis confirmed cell cycle arrest in the G2/M phase. Furthermore, cleaved caspase 3 staining confirmed that the number of apoptotic cells increased by 3-fold in the -DOX culture. Despite these effects, cells cultured in both the presence and absence of DOX formed teratomas in nude mice, thus indicating the maintenance of full differentiation capacity in the absence of the FA pathway. In order to determine the mechanisms underlying G2/M arrest and cell death, expression of p53 and its target genes was detected by both western blot analysis and qRT-PCR. Only a slight increase in p53 activation was observed by 7 days post DOX-withdrawal. Furthermore, knockdown of p53 resulted in rescue from apoptosis to normal levels but not rescue from cell cycle arrest. Increased ATM and ATR DNA damage sensor kinase activities were also detected in –DOX cells, concominant with increased phosphorylation of the ATM-target Chk2 and reduced abundance of the G2/M checkpoint protein CDC25A. These results reveal hyperactive DNA damage responses upon FA loss which may underlie the attenuated cell cycle progression of FA-iPSC independent of p53. Remarkably, effects in this FA model system appear equivalent to those responsible for the depletion of HSC in the bone marrow of FA patients. Thus, iPSC models may be useful for future studies of the mechanisms underlying FA stem cell arrest and for the development of therapeutics that alleviate these phenotypes. Disclosures No relevant conflicts of interest to declare.

Author(s):  
T. Zhao ◽  
G. Zadeh

Ionizing radiation (IR) is one of the conventional post-surgical treatments for Glioblastoma Multiforme (GBM). Mesenchymal stem cells (MSCs) constitute a subpopulation of bone marrow derived cells which are actively recruited to the site of radiation and/or tumour microenvironment (TME), both of which have important implications for neovascularization and tumor progression. The goal of this project is to investigate the functional contribution of MSCs in the TME. We postulate that Bone Marrow-MSCs promote radio-resistance in GBM via cell cycle arrest. We tested the effect of MSC on U87 glioblastoma cell line in response to IR. We found that MSC co-culture, MSC-conditioned media (MSCCM) and irradiated MSC-conditioned media (MSCIRCM) did not reduce IR-induced p53 (ser15) phosphorylation, signifying intact p53-dependent DNA damage pathway in all conditions. However, both MSCCM and MSCIRCM temporally increased phospho-Chk2, a kinase involved in ATM-dependent cascade and cell cycle arrest. This increase occurred at 24 hours and reverted to baseline levels by 48 hours. Interestingly, IR (15Gy) caused transiently heightened metabolic rate under MSC and MSC IRCM as opposed to IR-null treatment at 48 hours elevated cell proliferation. MSCCM, but not MSCIRCM, marginally reduced caspase 3/7-dependent apoptotic levels. The combination of IR and MSCCM as well as MSCIRCM first increased protein level of phospho-Chk2 at 24 hours; followed by increased metabolic rate at 48 hours; and lastly, boosted proliferation at 72 hours. This data combined proposes plausible machinery for BM-MSC mediated radio-resistance by initiating cell cycle arrest in tumour cells for DNA damage repair.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Toshinori Ozaki ◽  
Akira Nakagawara ◽  
Hiroki Nagase

A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such asp21WAF1,BAX, andPUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.


2017 ◽  
Vol 95 (6) ◽  
pp. 628-633 ◽  
Author(s):  
Liang Wang ◽  
Guang Bai ◽  
Fei Chen

Bone marrow mesenchymal stem cells (BMSCs) have considerable therapeutic potential for the treatment of end-stage liver disease. Previous studies have demonstrated that BMSCs secrete growth factors and cytokines that inactivate hepatic stellate cells (HSCs), which inhibited the progression of hepatic fibrosis. The aim of this study was to determine the mechanism by which BMSCs suppress the function of HSCs in fibrosis. Our results showed that co-culture of BMSCs and HSCs induced cell cycle arrest at the G10/G1 phase and cell apoptosis of HSCs, which finally inhibited the cell proliferation of HSCs. Consistent with the cell cycle arrest, co-culture of BMSCs and HSCs increased the abundance of the cell cycle protein p27. Mechanistically, we further uncovered that following the co-culture with BMSCs, the expression level of the E3 ligase S-phase kinase-associated protein 2 (SKP2) that is responsible for the ubiquitination of p27 was decreased, which attenuated the ubiquitination of p27 and increased the stability of p27 in HSCs. Collectively, our results indicated the potential involvement of the SKP2–p27 axis for the inhibitory effect of BSMCs on the cell proliferation of HSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1329-1329
Author(s):  
L.R. Devireddy

Abstract Programmed cell death or Apoptosis, is a critical aspect of normal physiology as well as the genesis and treatment of cancer. Certain apoptotic pathways are transcriptionally regulated; in these cases, apoptosis is induced by the transcriptional activation of genes encoding proapoptotic proteins. We originally identified lipocalin 24p3 as the gene undergoing maximum transcriptional stimulation following induction of apoptosis by cytokine-deprivation of interleukin 3 (IL-3) dependent cells. 24p3 is a member of the lipocalin family of carrier proteins – a group of small-secreted molecules that bind and transport low-molecular weight ligands. By delivering this cargo via cell-surface receptors they are known to influence many responses. 24p3 is a secreted lipocalin, which we have found induces apoptosis when added to a variety of lymphoid cells. These and other results revealed a model in which IL-3 deprivation activates 24p3 transcription, leading to synthesis and secretion of 24p3, which induces apoptosis through an autocrine/paracrine pathway. We have isolated the 24p3 cell surface receptor (24p3R) and found that 24p3 induces apoptosis through a novel pathway culminating in a decrease in intracellular iron levels (a biological iron chelator). Interestingly, iron chelators inhibit cellular proliferation and induce apoptosis, and are under active investigation as chemotherapeutic agents. The basis by which decreased intracellular iron induces apoptosis is not well understood. We performed expression-profiling experiments to identify differentially regulated genes in 24p3 and as a control in Deferoxamine (DFO), a synthetic iron chelator, treated cells. Our preliminary results suggest that 24p3 activates the expression of a novel gene, ING-2 (inhibitor of growth-2). ING-2 prevents cell growth by inducing cell cycle arrest at the G2/M phase. In contrast, the synthetic iron chelator, DFO activates the expression of NDRG1 (n-Myc downstream-regulated gene 1), which induces cell cycle arrest at G0/G1 phase. These results suggest that 24p3 induces cell death by activating regulators of the cell cycle. Finally, we have also found that the oncogene BCR-ABL counteracts the 24p3 proapoptotic pathway by misregulating expression of 24p3 and 24p3R. To study the contribution of 24p3 apoptotic pathway in the progression of CML, we have performed CML modeling experiments in mice. BCR-ABL transformed 24p3 deficient bone marrow cells failed to induce myeloproliferative disease in recipients upon transplantation. However, wild-type bone marrow cells when transduced with BCR-ABL oncogene readily induced CML-like disease in transplanted mice. Therefore, the secretion of 24p3 by BCR-ABL transformed cells facilitates the progression of CML. We have also demonstrated that 24p3 plays an important role in Gleevec-induced cell death in BCR-ABL transformed cells. These studies have therapeutic implications for Gleevec resistant CML.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 725-735 ◽  
Author(s):  
Hermance Beaud ◽  
Ans van Pelt ◽  
Geraldine Delbes

Anticancer drugs, such as alkylating agents, can affect male fertility by targeting the DNA of proliferative spermatogonial stem cells (SSC). Therefore, to reduce such side effects, other chemotherapeutics are used. However, less is known about their potential genotoxicity on SSC. Moreover, DNA repair mechanisms in SSC are poorly understood. To model treatments deprived of alkylating agents that are commonly used in cancer treatment, we tested the impact of exposure to doxorubicin and vincristine, alone or in combination (MIX), on a rat spermatogonial cell line with SSC characteristics (GC-6spg). Vincristine alone induced a cell cycle arrest and cell death without genotoxic impact. On the other hand, doxorubicin and the MIX induced a dose-dependent cell death. More importantly, doxorubicin and the MIX induced DNA breaks, measured by the COMET assay, at a non-cytotoxic dose. To elucidate which DNA repair pathway is activated in spermatogonia after exposure to doxorubicin, we screened the expression of 75 genes implicated in DNA repair. Interestingly, all were expressed constitutively in GC-6spg, suggesting great potential to respond to genotoxic stress. Doxorubicin treatments affected the expression of 16 genes (>1.5 fold change;P < 0.05) involved in cell cycle, base/nucleotide excision repair, homologous recombination and non-homologous end joining (NHEJ). The significant increase in CDKN1A and XRCC1 suggest a cell cycle arrest and implies an alternative NHEJ pathway in response to doxorubicin-induced DNA breaks. Together, our results support the idea that undifferentiated spermatogonia have the ability to respond to DNA injury from chemotherapeutic compounds and escape DNA break accumulation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 808-808
Author(s):  
Mrinal Y. Shah ◽  
Eva Martinez ◽  
Relja Popovic ◽  
Teresa Ezponda ◽  
Eliza C. Small ◽  
...  

Abstract MMSET/WHSC1 is a histone methyltransferase (HMT) overexpressed in t(4;14)+ multiple myeloma (MM) patients, and is believed to be the driving factor in the pathogenesis of this subtype of MM. Overexpression of MMSET also occurs in solid cancers, including neuroblastoma, colon and prostate. MMSET overexpression in MM and prostate cells leads to an increase in histone 3 lysine 36 dimethylation (H3K36me2), and a decrease in histone 3 lysine 27 trimethylation (H3K27me3). This altered epigenetic landscape is accompanied by changes in proliferation, gene expression, and chromatin accessibility. Prior work linked methylation of histones, including H3K36, to the ability of cells to undergo DNA damage repair. In addition, t(4;14)+ patients frequently relapse after regimens that include DNA damage-inducing agents, suggesting that MMSET might play a role in DNA damage repair and response. To investigate the role of MMSET in DNA damage repair, we transfected U2OS cells with a linearized vector expressing a neomycin-resistant gene. In the presence of G418, only cells that are able to integrate this plasmid through non-homologous end joining (NHEJ) can survive. siRNA knockdown of MMSET led to a decrease in cell survival, suggesting that MMSET is necessary for efficient DNA repair. We also used U2OS cells engineered to express the AsiSI enzyme fused to an estrogen receptor hormone-binding domain. Upon tamoxifen treatment, double strand breaks (DSBs) are induced at multiple AsiSI recognition sites, accompanied by an increase in γH2AX foci. The extent of repair after AsiSI-induced damage was ascertained by the ability of a DNA fragment that spans a specific cut site to be PCR amplified. With MMSET knockdown, there was a >10 fold increase in unrepaired DNA. ChIP analysis showed that with the depletion of MMSET, γH2AX persisted at the cut site. ChIP for specific effectors of DNA damage showed a marked decrease of recruitment of CtIP and RAD51 to the DSB. However, immunoblot analysis showed that CtIP and RAD51 levels were drastically decreased with MMSET depletion, thus explaining the loss of their recruitment to DSBs. In contrast, XRCC4 levels were maintained with MMSET siRNA, but its recruitment to the DSB decreased. CtIP is important for both NHEJ and homologous recombination (HR), RAD51 is critical for HR, and XRCC4 is necessary for NHEJ, suggesting that MMSET is important in multiple pathways of DNA repair. To study the effect of MMSET in MM, we used the t(4;14)+ KMS11 cell line, NTKO, and genetically matched TKO cells in which the overexpressed MMSET allele was knocked out. NTKO cells have elevated levels of DNA damage at baseline, as measured by a comet assay and by the presence of elevated numbers of 53BP1-positive foci. Upon addition of the DNA damaging agent melphalan, NTKO cells showed increased damage as measured by an increase in the tail moment by the comet assay. Paradoxically, upon treatment of these cells with the DNA damaging agents, NTKO cells survived better than TKO cells. NTKO repaired DNA damage at an enhanced rate and continued to proliferate after a significant DNA damage insult, whereas TKO cells accumulated DNA damage and entered cell cycle arrest. We repleted TKO cells with constructs expressing either wild-type MMSET or an HMT-dead (Y1118A) isoform. Upon treatment, cells expressing the wild-type MMSET have showed enhanced DNA repair and continued proliferation after DNA damage, whereas cells expressing the HMT-dead protein repaired DNA damage more slowly and entered cell cycle arrest. The HMT activity of MMSET was critical for the induction of expression of genes required for multiple DNA repair pathways including CHEK2, DDB2, DDIT3, RAD51, and MRE11, again suggesting that MMSET modulates DNA repair by affecting expression of critical components of the repair machinery. The clinical relevance of these finds becomes more apparent in vivo. Luciferase-tagged KMS11 cells harboring doxycycline-inducible MMSET shRNA were injected into nude mice. After one week, mice were treated with doxycycline and injected with melphalan or saline. Knockdown of MMSET or melphalan treatment alone decreased tumor growth but eventually all mice had progressive disease. Only when MMSET was knocked down and chemotherapy given were the mice rendered tumor free. These findings indicate a new mechanism for the ability of MMSET to enhance DNA repair and identify the protein as a potential therapeutic target in MM and other cancers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5348-5348
Author(s):  
Gabriela Rozic ◽  
Paukov Lena ◽  
Jana Jakubikova ◽  
Duek Adrian ◽  
Abraham Avigdor ◽  
...  

Abstract Background: Despite advances in treatment, multiple myeloma (MM) remains incurable due to development of drug resistance in the bone marrow microenvironment. Microtubules (MTs) are dynamic protein biopolymers formed through polymerization of heterodimers of α- and β-tubulins. Disruption of microtubules induces cell cycle arrest in G2-M phase and formation of abnormal mitotic spindles. MTs are also involved in many processes in interphase cells, including intracellular trafficking, cell motility and angiogenesis. The important functions of MT in the cells make them an attractive target for anti-myeloma drug discovery. Furan metotica is a novel class of anti-mitotic spindle drugs that inhibit kinetochore-microtubule binding and trigger a spindle checkpoint mediated arrest in mitosis, which frequently ends in cell death. We evaluated the activity of STK405759, a member of the furan metotica family, as a novel, potential antitubulin drug for MM treatment in preclinical models. Methods: Cytotoxic activity of STK405759 was evaluated by XTT assay. Apoptosis and cell cycle were analyzed by flow cytometry. Tubulin polymerization inhibition was evaluatedusing a biochemical cell free assay and by testingthe levels of soluble and polymerized tubulin in MM-treated cells using Western blot analysis. Efficacy and toxicity of the drug were checked in a murine MM xenograft model. Histochemistry was used to assay tumor apoptosis. Results: STK405759 had a potent cytotoxic activity against a wide variety of MM cell lines and patient-derived MM cells, regardless of their sensitivity to conventional therapy or novel agents. In contrast, the viability of normal peripheral blood mononuclear cells derived from healthy donors and MM patients was not affected. Importantly, STK405759 induced cell death of RPMI MM cells co-cultured with HS-5 bone marrow stromal cells. STK405759 inhibited tubulin polymerizationin a cell free system anddecreased the level of polymerized tubulin in MM treated cells.The STK405759 anti-tubulin activity was supported by demonstration of MM cell cycle arrest followed by activation of an apoptotic default pathway. Activation of pro-caspase-8 and poly (ADP-ribose) polymerase in the cleaved forms, as well as down-regulation of the Mcl-1 anti-apoptotic protein was detected in RPMI treated cells. Combination studies of STK405759 with bortezomib, lenalidomide or dexamethasone showed significant synergistic and additive cytotoxicity in MM cells. In vivo studies revealed decreased MM tumor burden and prolonged survival of STK405759-treated mice compared to controls. STK405759 induced apoptosis of tumors cells from treated mice. Summary/Conclusion: STK405759 is an active, microtubule-targeting agent with potent anti-myeloma activity. These results provide a rationale for further evaluation of STK405759 as monotherapy or part of combination therapy for treating patients with MM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document