scholarly journals Constraining Basin Parameters Using a Known Subsidence History

Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 263 ◽  
Author(s):  
Mohit Tunwal ◽  
Kieran F. Mulchrone ◽  
Patrick A. Meere

Temperature history is one of the most important factors driving subsidence and the overall tectono-stratigraphic evolution of a sedimentary basin. The McKenzie model has been widely applied for subsidence modelling and stretching factor estimation for sedimentary basins formed in an extensional tectonic environment. Subsidence modelling requires values of physical parameters (e.g., crustal thickness, lithospheric thickness, stretching factor) that may not always be available. With a given subsidence history of a basin estimated using a stratigraphic backstripping method, these parameters can be estimated by quantitatively comparing the known subsidence curve with modelled subsidence curves. In this contribution, a method to compare known and modelled subsidence curves is presented, aiming to constrain valid combinations of the stretching factor, crustal thickness, and lithospheric thickness of a basin. Furthermore, a numerical model is presented that takes into account the effect of sedimentary cover on thermal history and subsidence modelling of a basin. The parameter fitting method presented here is first applied to synthetically generated subsidence curves. Next, a case study using a known subsidence curve from the Campos Basin, offshore Brazil, is considered. The range of stretching factors estimated for the Campos basin from this study is in accordance with previous work, with an additional estimate of corresponding lithospheric thickness. This study provides insight into the dependence of thermal history and subsidence modelling methods on assumptions regarding model input parameters. This methodology also allows for the estimation of valid combinations of physical lithospheric parameters, where the subsidence history is known.

1987 ◽  
Vol 135 ◽  
pp. 72-81
Author(s):  
C Marcussen ◽  
F.G Christiansen ◽  
P.-H Larsen ◽  
H Olsen ◽  
S Piasecki ◽  
...  

A study of the onshore hydrocarbon potential of central and northem East Greenland was initiated in 1986. Field work was carried out from early July to mid August covering the region between Kong Oscar Fjord and Kejser Franz Joseph Fjord (fig. 1). In 1987 field activities will continue further to the north, eventually reaching Danmarkshavn (77°N). The programme is a continuation of the 1982-83 investigations in Jameson Land (Surlyk, 1983; Surlyk et al., 1984a) and is part of a regional programme comprising petroleum geological studies of all sedimentary basins in Greenland (Larsen & Marcussen, 1985; Larsen, 1986). The aim of the two-year field study followed by laboratory analyses is: (1) to study the presence and distribution of potential hydrocarbon source rocks in the region; (2) to evaluate the thermal history and maturity pattern of the region including the thermal effect of Tertiary intrusions and volcanics; (3) to make a stratigraphic, sedimentological and tectonic study of the region with special emphasis on subsidence history, reservoir formation and potential hydrocarbon traps.


2019 ◽  
Vol 220 (1) ◽  
pp. 522-540
Author(s):  
Montserrat Torne ◽  
Ivone Jiménez–Munt ◽  
Jaume Vergés ◽  
Manel Fernàndez ◽  
Alberto Carballo ◽  
...  

SUMMARY This study presents for the first time an integrated image of the crust and lithospheric mantle of Alaska and its adjacent western shelves of the Chukchi and Bering seas based on joint modelling of potential field data constrained by thermal analysis and seismic data. We also perform 3-D forward modelling and inversion of Bouguer anomalies to analyse density heterogeneities at the crustal level. The obtained crustal model shows northwest-directed long wavelength thickening (32–36 km), with additional localized trends of thicker crust in the Brooks Range (40 km) and in the Alaska and St Elias ranges (50 km). Offshore, 28–30-km-thick crust is predicted near the Bearing slope break and 36–38 km in the northern Chukchi Shelf. In interior Alaska, the crustal thickness changes abruptly across the Denali fault, from 34–36 to the north to above 30 km to the south. This sharp crustal thickness gradient agrees with the presence of a crustal tectonic buttress guiding block motion west and south towards the subduction zone. The average crustal density is 2810 kg m−3. The denser crust, up to 2910 kg m−3, is found south of the Denali Fault likely related to the oceanic nature of the Wrangellia Composite Terrane rocks. Offshore, less dense crust (<2800 kg m−3) is found along the sedimentary basins of the Chukchi and Beaufort shelves. At LAB levels, there is a regional SE–NW trend that coincides with the current Pacific Plate motion, with a lithospheric root underneath the Brooks Range, Northern Slope, and Chuckchi Sea, that may correspond to a relic of the Chukotka-Artic Alaska microplate. The obtained lithospheric root (above 180 km) agrees with the presence of a boundary of cold, strong lithosphere that deflects the strain towards the South. South of the Denali Fault the LAB topography is quite complex. East of 150°W, below Wrangellia and the eastern side of Chugach terranes, the LAB is much shallower than it is west of this meridian. The NW trending limit separating thinner lithosphere in the east and thicker in the west agrees with the two-tiered slab shape of the subducting Pacific Plate.


2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

&lt;p&gt;Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 &amp;#177; 5.1 Ma, 59.5 &amp;#177; 5.2 and 101.6 &amp;#177; 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 &amp;#177; 17.5 Ma (MSWD: 7.4), 353.5 &amp;#177; 13.5 Ma (MSWD: 3.1) and 261.2 &amp;#177; 8.5 Ma (MSWD: 5.9). All AFT data fail the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r&lt;sub&gt;mro&lt;/sub&gt; parameter uses grain specific chemistry to predict apatite&amp;#8217;s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r&lt;sub&gt;mro&lt;/sub&gt; values and each sample was separated into two kinetic populations that pass the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test: a less retentive population with ages ranging from 49.3 &amp;#177; 9.3 Ma to 36.4 &amp;#177; 4.7 Ma, and a more retentive population with ages ranging from 157.7 &amp;#177; 19 Ma to 103.3 &amp;#177; 11.8 Ma, with r&lt;sub&gt;mr0&lt;/sub&gt; benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165&amp;#176;C-185&amp;#176;C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75&amp;#176;C-110&amp;#176;C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75&amp;#176;C-95&amp;#176;C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.&lt;/p&gt;


2021 ◽  
Author(s):  
Harry Telajan Linang ◽  
Amy Gilligan ◽  
Jennifer Jenkins ◽  
Tim Greenfield ◽  
Felix Tongkul ◽  
...  

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;Borneo is located at the centre of Southeast Asia, which is one of the most active tectonic regions on Earth due to the subduction of the Indo-Australian plate in the south and the Philippines Sea plate in the east. Borneo resides on the leading edge of the Sundaland block of the Eurasian plate and exhibits lower rates of seismicity when compared to the surrounding regions due to its intraplate setting. Sulawesi, an island which lies just southeast of Borneo, is characterised by intense seismicity due to multiple subduction zones in its vicinity. The tectonic relationship between the two islands is poorly understood, including the provenance of their respective lithospheres, which may have Eurasian and/or East Gondwana origin.&lt;/p&gt; &lt;p&gt;Here, we present recent receiver function (RF) results from temporary and permanent broadband seismic stations in the region, which can be used to help improve our understanding of the crust and mantle lithosphere beneath Borneo and Sulawesi. We applied H-K stacking, receiver function migration and inversion to obtain reliable estimates of the crustal thickness beneath the seismic stations. Our preliminary results indicate that the crust beneath Sabah (in northern Borneo), which is a post-subduction setting, appears to be much more complex and is overall thicker (more than 35 km) than the rest of the island. In addition, we find that crustal thickness varies between different tectonic blocks defined from previous surface mapping, with the thinnest crust (23 to 25 km) occurring beneath Sarawak in the west-northwest as well as in the east of Kalimantan.&lt;/p&gt; &lt;p&gt;We also present preliminary results from Virtual Deep Seismic Sounding (VDSS) in northern Borneo, where from the RF results we know that there is thick and complex crust. VDSS is able to produce well constrained crustal thickness results in regions where the RF analysis has difficulty recovering the Moho, likely due to complexities such as thick sedimentary basins and obducted ophiolite sequences.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


2021 ◽  
Vol 228 (1) ◽  
pp. 631-663
Author(s):  
Kyle Batra ◽  
Bradford Foley

SUMMARY Stagnant-lid convection, where subduction and surface plate motion is absent, is common among the rocky planets and moons in our solar system, and likely among rocky exoplanets as well. How stagnant-lid planets thermally evolve is an important issue, dictating not just their interior evolution but also the evolution of their atmospheres via volcanic degassing. On stagnant-lid planets, the crust is not recycled by subduction and can potentially grow thick enough to significantly impact convection beneath the stagnant lid. We perform numerical models of stagnant-lid convection to determine new scaling laws for convective heat flux that specifically account for the presence of a buoyant crustal layer. We systematically vary the crustal layer thickness, crustal layer density, Rayleigh number and Frank–Kamenetskii parameter for viscosity to map out system behaviour and determine the new scaling laws. We find two end-member regimes of behaviour: a ‘thin crust limit’, where convection is largely unaffected by the presence of the crust, and the thickness of the lithosphere is approximately the same as it would be if the crust were absent; and a ‘thick crust limit’, where the crustal thickness itself determines the lithospheric thickness and heat flux. Scaling laws for both limits are developed and fit the numerical model results well. Applying these scaling laws to rocky stagnant-lid planets, we find that the crustal thickness needed for convection to enter the thick crust limit decreases with increasing mantle temperature and decreasing mantle reference viscosity. Moreover, if crustal thickness is limited by the formation of dense eclogite, and foundering of this dense lower crust, then smaller planets are more likely to enter the thick crust limit because their crusts can grow thicker before reaching the pressure where eclogite forms. When convection is in the thick crust limit, mantle heat flux is suppressed. As a result, mantle temperatures can be elevated by 100 s of degrees K for up to a few Gyr in comparison to a planet with a thin crust. Whether convection enters the thick crust limit during a planet’s thermal evolution also depends on the initial mantle temperature, so a thick, buoyant crust additionally acts to preserve the influence of initial conditions on stagnant-lid planets for far longer than previous thermal evolution models, which ignore the effects of a thick crust, have found.


Geophysics ◽  
1972 ◽  
Vol 37 (2) ◽  
pp. 288-300 ◽  
Author(s):  
Walter W. Hays

The amplitude and frequency composition of the seismic motions observed over a wide geographic area from Gasbuggy and Rulison, two Plowshare detonations, illustrates the effect which source and recording site parameters have on the resultant ground motion. Gasbuggy (29 kt) and Rulison (40 kt) were detonated, respectively, in the San Juan and Piceance Creek sedimentary basins of New Mexico and Colorado. Because both detonations were emplaced in sedimentary formations to stimulate the flow of natural gas, these detonations were placed at a greater depth of burial than typically required for containment. The effect of source parameters (device depth of burial and energy release) was simulated by seismic scaling theory. This theory (based on an extension of Sharpe’s problem) predicted a smaller elastic radius and, consequently, higher dominant frequency of generation for the elastic waves than would be expected on the basis of Nevada Test Site experience with typically contained events of 29 and 40 kt. Observed effects of the source variables were displayed in the Gasbuggy and Rulison seismic data: (1) a shift of the frequency of maximum spectral response to the high frequency end of the spectrum and (2) enhancement of the peak vector surface particle accelerations and velocities and a decrease in the peak vector surface particle displacements. Some of the Rulison recording sites were located on thin (50 ft thick or less) layers of alluvium which, on the basis of refraction surveys, exhibited a fairly significant contrast in acoustic impedance relative to that of the underlying sedimentary rocks. The effect of the lowvelocity alluvium layers at recording sites of interest was simulated by amplitude amplification modeling (based on the Haskell‐Thompson matrix formulation) using interpreted data from refraction surveys to define the layer physical parameters. These calculations indicated that significant local frequency‐dependent amplification would occur at some locations in the Piceance Creek Basin, a prediction which was verified by the seismic data.


2000 ◽  
Vol 6 (4) ◽  
pp. 323-329 ◽  
Author(s):  
J.M. Aguilera ◽  
J. Ortiz

Fresh paste from horse mackerel ( T. murphyi) surimi-type, was processed during setting using (2%) KCI. The paste was subjected to different heating and cooling cycles. The salt produced an improve ment in kamaboko-type gel formation. The heating and cooling cycles enhanced the setting process and improved textural quality of the resulting gel, mainly when the heating before cooling was slow. The setting process was characterized by several physical parameters: storage module ( G'), using an oscillatory rheological technique, and apparent Young module ( E), by means of mechanical compres sion tests. The enthalpic changes for gelification of the paste were determined using differential scan ning calorimetry.


Sign in / Sign up

Export Citation Format

Share Document