scholarly journals Alginite-Rich Layers in the Bazhenov Deposits of Western Siberia

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 252
Author(s):  
Timur Bulatov ◽  
Elena Kozlova ◽  
Evgeniya Leushina ◽  
Ivan Panchenko ◽  
Natalia Pronina ◽  
...  

In this study, we identified the luminescent layers containing a significant amount of alginite in the Upper Jurassic–Lower Cretaceous Bazhenov Formation named “the alginite-rich layers”. Lithological and geochemical methods were used to determine distinctive features of these layers and to evaluate their impact on the total petroleum generation potential of the Bazhenov Formation. We have shown that the composition of the alginite-rich layers differs significantly from the organic-rich siliceous Bazhenov rocks. Rock-Eval pyrolysis, bulk kinetics of thermal decomposition, elemental analysis, and the composition of pyrolysis products indicate type I kerogen to be the predominant component of the organic matter (OM). Isotope composition of carbon, nitrogen, and sulfur was used to provide insights into their origin and formation pathways. The luminescent alginite-rich layers proved to be good regional stratigraphic markers of the Bazhenov Formation due to widespread distribution over the central part of Western Siberia. They can also be applied for maturity evaluation of the deposits from immature to middle of the oil window, since the luminescence of the layers changes the color and intensity during maturation.

2020 ◽  
Vol 4 (2) ◽  
pp. 24-34
Author(s):  
Ayad Faqi

The impact of tectonic activities from different tectonic zones on hydrocarbon generation in the Upper Jurassic Naokelekan Formation was addressed in this study. The Upper Jurassic Naokelekan Formation is an important potential of source rocks for hydrocarbon generation that charges most of the Cretaceous and younger reservoirs in the Kurdistan Region, Iraq. A total of 5 rock specimens from the Warte outcrop and 7 cutting samples from Well Bina Bawi-1 were collected for Rock-Eval pyrolysis to investigate the relationship between the ability of the formation to generate hydrocarbons and tectonic activities. The results of Rock-Eval analysis on the analyzed samples showed an average of 2.65 wt% and 0.9 wt% total organic carbon (TOC) for Warte and Well Bina Bawi-1, respectively. Based on the TOC data, the Naokelekan Formation, in general, has a good to very good source rock potential. The qualitative properties of the organic matter (OM) of the formation were inferred from the kerogen types. The Warte section mostly contains type III kerogen that is gas prone, whereas the Well Bina Bawi-1 section contains mixed type I-II kerogen that is oil prone. It should be taken into consideration that the values for the hydrogen index (HI) of the Warte section are unreliable for interpretation of the organic type, because the HI is considerably reduced owing to the high level of thermal maturity. The Tmax values showed that the Warte section is thermally more mature than the Well Bina Bawi-1 section. The difference in the thermal maturity can likely be attributed to the differential effects of the tectonic activities on the studied areas. Depending on the proximity or distance of the area in relation to the subduction zone, the sediments in the Imbricated Zone were more affected by the tectonic activities than the sediments in the High Folded Zone. Accordingly, the main factors that might have caused a higher thermal maturity in the Imbricated Zone include a high paleo heat flow, overthrusting, and hydrothermal activities.


2020 ◽  
Vol 33 (01) ◽  
pp. 84-93
Author(s):  
Yuriy V. Erokhin ◽  
Kirill S. Ivanov ◽  
Vera V. Khiller

Bazhenov Formation is regarded as the main oil-bearing stratum mothering nearly all the fields of the Western Siberia Oil-Gas-bearing Megabasin. Presently, it is one of the most studied formations of Siberia and, probably, Eurasia as a whole. While there is an enormous amount of studies devoted to the Bazhenov Formation, there are no detailed mineralogical studies at the modern hardware level. The age and sources of the terrigenous materials of the formation have not been studied as well. We have explored the detrital monazite from the upper-Jurassic terrigenous sediments of the Multan Area at the foundation of the Bazhenov Formation in the central part of Western Siberia, Surgut District. All the detrital rare earth phosphate is of the cerium kind being a monazite-(Се). The mineral is rather dissimilar in respect of its chemical properties, especially, the content of thorium. Some fragments have been subjected to superposed secondary changes. The detrital monazite is rounded to various degrees which is indicative of the various distances from the rare earth phosphate orebody washout. As per the chemical data, most of the monazite has been washed out from the medium and basic rocks (probably subalkaline or alkaline) as well as the sialic rocks (granitoids and associated veins). According to the chemical dating, most of the monazite fragments have been washed out of the very ancient Proterozoic formations and lower-Proterozoic rocks. Terrigenous materials derives probably from the rock assemblages of the eastern and south-eastern fringes of the Western Siberian megabasin such as the Proterozoic Yenisei Ridge or Lower-Proterozoic blocks of the Altay and Sayan Faulting.


2020 ◽  
Vol 56 (1) ◽  
pp. 187
Author(s):  
Rzger Abdula ◽  
Kamal Kolo ◽  
Maria-Elli Damoulianou ◽  
Victoria Raftopoulou ◽  
Polla Khanaqa ◽  
...  

The aim of this study is to assess the type, thermal maturity and the petroleum generation potential of the Upper Jurassic Naokelekan Formation, occurring across the Kurdistan Region of Iraq, by applying organic petrographical methods and Rock-Eval analysis. The Rock-Eval data would indicate the presence of kerogen types III, IV and II as the main constituents. However, the qualitative petrographical evaluation revealed that the main organic constituents are solid hydrocarbons, in the form of microgranular migrabitumens, with minor amounts of pyrobitumens. These secondary particles have affected the results of the Rock-Eval analysis and would have led to misinterpretation of organic matter typification based on pyrolysis results only. The combined results of petrography and pyrolysis indicate an active petroleum system within the Upper Jurassic sequence, where hydrocarbons are generated and reservoired within suitable lithologies.


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Elizaveta A. Krasnova ◽  
Anna Yu. Yurchenko ◽  
Anton G. Kalmykov ◽  
Maria M. Fomina

In this work we describe the distribution of stable carbon isotopes in hydrocarbon gases from four wells located in the southern and central parts of the Western Siberia. The main goal was to understand the influence of the lithological composition and geological settings on isotopic composition of gases and their formation. Two genetically different groups of hydrocarbon gases were identified based on the author’s research, as well as analysis of archival and literature materials on the isotope composition of hydrocarbons. We estimated the close relationship between the main factors of the migration, degree of metamorphism of organic matter and the isotope composition of hydrocarbon gases produced by the Bazhenov formation.


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 143-152
Author(s):  
Vika G. Eder ◽  
Alvina G. Zamiraylova ◽  
Georgii A. Kalmykov

A comprehensive lithological-geochemical study of rocks of the Upper Jurassic-Lower Cretaceous blackshale Bazhenov formation showed that most of its carbonatized interlayers to the boundaries of packs of different composition differing in carbonate content, degree of siliceousness or clayiness. At the same time, at the boundaries of the Bazhenov formation with host sediments, where carbonate rocks are often found in association with “pyrite” low carbon rocks according to geochemical parameters (degree of pyritization, Mn/Al, Ua), a change in the redox regime is recorded. In the most studied stratum at intervals of occurrence of carbonates, a change in the redox regime is not observed. It is assumed that they existed alkaline barriers, as evidenced by the change in the composition of rocks. The following geochemical barriers (bottom-up along the section) were identified in the Bazhenov formation and its transition to the enclosing sediments, on which evidence of localization of carbonate minerals was found: redox barrier 1 (lower BF boundary), alkaline barrier 1 (border of mixes of kerogen - clay-siliceous low-carbonate and silicites), alkaline barrier 2 (border of kerogen-clay-siliceous low-carbonate and siliceous-carbonate “coccolith” packs); Redox barrier 2 (the upper limit of the BF).


Author(s):  
Lev V. Razumovsky

On the basis of author's graphical analysis method, the typification of lake ecosystems transformation scenarios depending on the size of lakes was carried out. It was confirmed that the type of transformation depends not only on size of the lake, but also on the landscape and climatic region in which it is located. The distinctive features of lake ecosystems transformation types in the European part of Russia and in Western Siberia were analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document