scholarly journals Laboratory Investigation of Hydraulic Fracture Behavior of Unconventional Reservoir Rocks

Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 292
Author(s):  
Maria Bobrova ◽  
Sergey Stanchits ◽  
Anna Shevtsova ◽  
Egor Filev ◽  
Vladimir Stukachev ◽  
...  

The heterogeneity of the rock fabric is a significant factor influencing the initiation and propagation of a hydraulic fracture (HF). This paper presents a laboratory study of HF created in six shale-like core samples provided by RITEK LLC collected from the same well, but at different depths. For each tested sample, we determined the breakdown pressure, the HF growth rate, and the expansion of the sample at the moment when the HF reaches the sample surface. Correlations were established between the HF parameters and the geomechanical characteristics of the studied samples, and deviations from the general relationships were explained by the influence of the rock matrix. The analysis of the moment tensor inversion of radiated acoustic emission (AE) signals allows us to separate AE signals with a dominant shear component from the signals with a significant tensile component. The direction of microcrack opening was determined, which is in good agreement with the results of the post-test X-ray CT analysis of the created HF. Thus, it has been shown that a combination of several independent laboratory techniques allows one to reliably determine the parameters that can be used for verification of hydraulic fracturing models.

1996 ◽  
Vol 86 (5) ◽  
pp. 1255-1269 ◽  
Author(s):  
Michael E. Pasyanos ◽  
Douglas S. Dreger ◽  
Barbara Romanowicz

Abstract Recent advances in broadband station coverage, continuous telemetry systems, moment-tensor procedures, and computer data-processing methods have given us the opportunity to automate the two regional moment-tensor methods employed at the UC Berkeley Seismographic Station for events in northern and central California. Preliminary solutions are available within minutes after an event has occurred and are subsequently human reviewed. We compare the solutions of the two methods to each other, as well as the automatic and revised solutions of each individual method. Efforts are being made to establish robust criteria for determining accurate solutions with human review and to fully automate the moment-tensor procedures into the already-existing automated earthquake-location system.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


2021 ◽  
Author(s):  
Álvaro González

<p>Statistical seismology relies on earthquake catalogs as homogeneous and complete as possible. However, heterogeneities in earthquake data compilation and reporting are common and frequently are not adverted.</p><p>The Global Centroid Moment Tensor Catalog (www.globalcmt.org) is considered as the most homogeneous global database for large and moderate earthquakes occurred since 1976, and it has been used for developing and testing global and regional forecast models.</p><p>Changes in the method used for calculating the moment tensors (along with improvements in global seismological monitoring) define four eras in the catalog (1976, 1977-1985, 1986-2003 and 2004-present). Improvements are particularly stark since 2004, when intermediate-period surface waves started to be used for calculating the centroid solutions.</p><p>Fixed centroid depths, used when the solution for a free depth did not converge, have followed diverse criteria, depending on the era. Depth had to be fixed mainly for shallow earthquakes, so this issue is more common, e.g. in the shallow parts of subduction zones than in the deep ones. Until 2003, 53% of the centroids had depths calculated as a free parameter, compared to 78% since 2004.</p><p>Rake values have not been calculated homogenously either. Until 2003, the vertical-dip-slip components of the moment tensor were assumed as null when they could not be constrained by the inversion (for 3.3% of the earthquakes). This caused an excess of pure focal mechanisms: rakes of -90° (normal), 0° or ±180° (strike-slip) or +90° (thrust). Even disregarding such events, rake histograms until 2003 and since 2004 are not equivalent to each other.</p><p>The magnitude of completeness (<em>M</em><sub>c</sub>) of the catalog is analyzed here separately for each era. It clearly improved along time (average <em>M</em><sub>c</sub> values being ~6.4 in 1976, ~5.7 in 1977-1985, ~5.4 in 1986-2003, and ~5.0 since 2004). Maps of <em>M</em><sub>c</sub> for different eras show significant spatial variations.</p>


2019 ◽  
Vol 40 (2) ◽  
pp. 951-975 ◽  
Author(s):  
Dietrich Braess ◽  
Astrid S Pechstein ◽  
Joachim Schöberl

Abstract We develop an a posteriori error bound for the interior penalty discontinuous Galerkin approximation of the biharmonic equation with continuous finite elements. The error bound is based on the two-energies principle and requires the computation of an equilibrated moment tensor. The natural space for the moment tensor is that of symmetric tensor fields with continuous normal-normal components, and is well-known from the Hellan-Herrmann-Johnson mixed formulation. We propose a construction that is totally local. The procedure can also be applied to the original Hellan–Herrmann–Johnson formulation, which directly provides an equilibrated moment tensor.


2019 ◽  
Vol 220 (1) ◽  
pp. 218-234 ◽  
Author(s):  
Xin Wang ◽  
Zhongwen Zhan

SUMMARY Earthquake focal mechanisms put primary control on the distribution of ground motion, and also bear on the stress state of the crust. Most routine focal mechanism catalogues still use 1-D velocity models in inversions, which may introduce large uncertainties in regions with strong lateral velocity heterogeneities. In this study, we develop an automated waveform-based inversion approach to determine the moment tensors of small-to-medium-sized earthquakes using 3-D velocity models. We apply our approach in the Los Angeles region to produce a new moment tensor catalogue with a completeness of ML ≥ 3.5. The inversions using the Southern California Earthquake Center Community Velocity Model (3D CVM-S4.26) significantly reduces the moment tensor uncertainties, mainly owing to the accuracy of the 3-D velocity model in predicting both the phases and the amplitudes of the observed seismograms. By comparing the full moment tensor solutions obtained using 1-D and 3-D velocity models, we show that the percentages of non-double-couple components decrease dramatically with the usage of 3-D velocity model, suggesting that large fractions of non-double-couple components from 1-D inversions are artifacts caused by unmodelled 3-D velocity structures. The new catalogue also features more accurate focal depths and moment magnitudes. Our highly accurate, efficient and automatic inversion approach can be expanded in other regions, and can be easily implemented in near real-time system.


2020 ◽  
Vol 91 (2A) ◽  
pp. 891-900
Author(s):  
Yan Xu ◽  
Keith D. Koper ◽  
Relu Burlacu ◽  
Robert B. Herrmann ◽  
Dan-Ning Li

Abstract Because of the collision of the Indian and Eurasian tectonic plates, the Yunnan Province of southwestern China has some of the highest levels of seismic hazard in the world. In such a region, a catalog of moment tensors is important for estimating seismic hazard and helping understand the regional seismotectonics. Here, we present a new uniform catalog of moment tensor solutions for the Yunnan region. Using a grid-search technique to invert seismic waveforms recorded by the permanent regional network in Yunnan and the 2 yr ChinArray deployment, we present 1833 moment tensor solutions for small-to-moderate earthquakes that occurred between January 2000 and December 2014. Moment magnitudes in the new catalog vary from Mw 2.2 to 6.1, and the catalog is complete above Mw∼3.5–3.6. The moment tensors are constrained to be purely double-couple and show a variety of faulting mechanisms. Normal faulting events are mainly concentrated in northwest Yunnan, while farther south along the Sagaing fault the earthquakes are mostly thrust and strike slip. The remaining area includes all three styles of faulting but mostly strike slip. We invert the moment tensors for the regional stress field and find a strong correlation between spatially varying maximum horizontal stress and Global Positioning System observations of horizontal ground velocity. The stress field reveals clockwise rotation around the eastern Himalayan syntaxis, with northwest–southeast compression to the east of the Red River fault changing to northeast–southwest compression west of the fault. Almost 88% of the centroid depths are shallower than 16 km, consistent with a weak and ductile lower crust.


1989 ◽  
Vol 60 (2) ◽  
pp. 37-57 ◽  
Author(s):  
M. L. Jost ◽  
R. B. Herrmann

Abstract A review of a moment tensor for describing a general seismic point source is presented to show a second order moment tensor can be related to simpler seismic source descriptions such as centers of expansion and double couples. A review of literature is followed by detailed algebraic expansions of the moment tensor into isotropic and deviatoric components. Specific numerical examples are provided in the appendices for use in testing algorithms for moment tensor decomposition.


Sign in / Sign up

Export Citation Format

Share Document