scholarly journals Wildfires Effect on Debris Flow Occurrence in Italian Western Alps: Preliminary Considerations to Refine Debris Flow Early Warnings System Criteria

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 422
Author(s):  
Davide Tiranti ◽  
Roberto Cremonini ◽  
Daniele Sanmartino

Rarely, a close correlation between wildfires and the occurrence of channelized debris flows has been observed in the Western Italian Alps. Only two cases in history have been reported, after brief and localized rainfall events of moderate intensity in Italy's Piemonte region (NW Italy) caused debris flows, on 18 July 2005, in Verbania province (Pallanzeno municipality), and on June 2018 in Turin province (Bussoleno municipality). These phenomena occurred after a large portion of the catchments were affected by wide wildfires in the preceding months. Debris flow deposits showed an unusually large number of fine-grained particles, forming dark-brown mud-rich deposits associated with burnt wood deposits. Rainfall analysis related to the period between the wildfires' occurrence and the debris flow events, using both raingauge and weather radar data, pointed out that the debris flows triggered in July 2005 and June 2018 were characterized by greater magnitude but associated with less precipitation intensity rates as compared with previous mud flows occurring just after wildfires. These behaviors can be explained by the presence of burned organic material and fine-grained sediment, generated from the soil's thermal reworking, which formed a thick layer, centimeters deep, covering a large percentage of catchments and slopes. Most of this layer, generated by wildfires’ action were winnowed by rainfall events that had occurred in the months before the debris flow events, of significant magnitude, exhuming a discontinuous hydrophobic soil surface that changed the slopes’ permeability characteristics. In such conditions, runoff increased, corrivation time shortened, and, consequently, discharge along the two catchments’ channels-network increased as well. Consequently, the rainfall effects associated with rainfall events in July 2005 and June 2019 were more effective in mobilizing coarse sediments in channel beds than was typical for those catchments.

Author(s):  
Marisa C. Palucis ◽  
Thomas P. Ulizio ◽  
Michael P. Lamb

Steep, rocky landscapes often produce large sediment yields and debris flows following wildfire. Debris flows can initiate from landsliding or rilling in soil-mantled portions of the landscape, but there have been few direct observations of debris flow initiation in steep, rocky portions of the landscape that lack a thick, continuous soil mantle. We monitored a steep, first-order catchment that burned in the San Gabriel Mountains, California, USA. Following fire, but prior to rainfall, much of the hillslope soil mantle was removed by dry ravel, exposing bedrock and depositing ∼0.5 m of sandy sediment in the channel network. During a one-year recurrence rainstorm, debris flows initiated in the channel network, evacuating the accumulated dry ravel and underlying cobble bed, and scouring the channel to bedrock. The channel abuts a plowed terrace, which allowed a complete sediment budget, confirming that ∼95% of sediment deposited in a debris flow fan matched that evacuated from the channel, with a minor rainfall-driven hillslope contribution. Subsequent larger storms produced debris flows in higher-order channels but not in the first-order channel because of a sediment supply limitation. These observations are consistent with a model for post-fire ravel routing in steep, rocky landscapes where sediment was sourced by incineration of vegetation dams—following ∼30 years of hillslope soil production since the last fire—and transported downslope by dry processes, leading to a hillslope sediment-supply limitation and infilling of low-order channels with relatively fine sediment. Our observations of debris flow initiation are consistent with failure of the channel bed alluvium due to grain size reduction from dry ravel deposits that allowed high Shields numbers and mass failure even for moderate intensity rainstorms.


2010 ◽  
Vol 10 (3) ◽  
pp. 571-580 ◽  
Author(s):  
M. Floris ◽  
A. D'Alpaos ◽  
C. Squarzoni ◽  
R. Genevois ◽  
M. Marani

Abstract. In this paper, we examine variations in climate characteristics near the area of Cortina d'Ampezzo (Dolomites, Eastern Italian Alps), with particular reference to the possible implications for debris-flow occurrence. The study area is prone to debris-flow release in response to summer high-intensity short-duration rainfalls and, therefore, it is of the utmost importance to investigate the potential increase in debris-flow triggering rainfall events. The critical rainfall threshold is agreed to be a crucial triggering factor for debris-flows. Data from a monitoring system, placed in a catchment near Cortina (Acquabona), show that debris-flows were triggered by rainfalls with peak rainfall intensities ranging from 4.9 to 17.4 mm/10 min. The analyses of meteorological data, collected from 1921 to 1994 at several stations in the study area, show a negative trend of annual rainfall, a considerable variation in the monthly rainfall distribution, and an increase in the temperature range, possibly related to global climate changes. Moreover, high-intensity and short-duration rainfall events, derived from data collected from 1990 and 2008, show an increase in exceptional rainfall events. The results obtained in a peak-over-threshold framework, applied to the rainfall data measured at the Faloria rain gauge station from 1990 to 2008, clearly show that the interarrival time of over-threshold events computed for different threshold values decreased in the last decade. This suggests that local climatic changes might produce an increase in the frequency of rainfall events, potentially triggering debris flows in the study area.


2018 ◽  
Vol 40 ◽  
pp. 06044
Author(s):  
Celso Castro-Bolinaga ◽  
Panayiotis Diplas ◽  
Robert Bodnar

The objective of this research is to assess the effect that extreme hydrologic events have on the propagation of sediment pulses in river corridors. These sediment-flow hazards are associated with large amounts of loose material suddenly deposited in rivers by the action of external factors or processes of natural or anthropogenic origin, including landslides, debris flows from tributaries, dam removal projects, and mining-related activities. Their occurrence is associated with severe channel aggradation and degradation, floodplain deposition, damage of infrastructure, and impairment of riparian and aquatic ecosystems. Given that the intensity of rainfall events have been significantly enhanced due to the influence of various human activities, sediment pulses are expected to become more common, with a more pronounced downstream impact as such climatic changes directly affect the magnitude, duration, and frequency of flows in riverine environments. Herein, numerical simulations were performed to characterize the propagation of a fine-grained sediment pulse for the 10-, 100-, and 500-yr storms. Results indicate that magnitude, frequency, and duration of the storms primarily influence the temporal variation of the total sediment discharge. In particular, these storm characteristics have a marked impact on the relationship between pre- and post-pulse conditions in the river channel, the dissipation of the pulse peak discharge, and the travel time of the pulse apex.


2001 ◽  
Vol 7 (4) ◽  
pp. 321-341 ◽  
Author(s):  
Susan H. Cannon

Abstract Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 ( approximately 40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basin, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.


2020 ◽  
Vol 27 (1) ◽  
pp. 95-111
Author(s):  
Velio Coviello ◽  
Joshua I. Theule ◽  
Stefano Crema ◽  
Massimo Arattano ◽  
Francesco Comiti ◽  
...  

ABSTRACT In mountain basins, long-term instrumental monitoring coupled with high-resolution topographic surveys can provide important information on sediment yield. The Gadria catchment, located in the eastern Italian Alps, typically features several low-magnitude flood episodes and a few debris-flow events per year, from late spring to late summer. Beginning in 2011, sensors devoted to debris-flow detection (geophones, video cameras, flow stage sensors) were installed along the main channel, upstream of a retention basin. In case of debris flows, high-resolution topographical surveys of the retention basin are carried out multiple times per year. Rainfall is measured in the lower part of the catchment and at the headwaters, while passive integrated transponder tracing of bedload was performed in the main channel during spring and summer 2014. In this work, we present the reconstruction of the sediment dynamics at the catchment scale from 2011 to 2017. Results show that (i) coarse sediment yield is dominated by the few debris flows occurring per year; (ii) debris-flow volume estimations may be significantly different—up to 30 percent lower—when performed through a digital elevation model of difference analysis, compared to the time-integration of the debris-flow discharge estimates; (iii) using this latter method, the volumes are affected by significant uncertainties, particularly for small values of flow depth; and (iv) rainfall analysis permits us to characterize debris-flow initiation but also highlights difficulties in discriminating triggering from non-triggering rainstorms if based on rainfall duration and intensity only.


2012 ◽  
Vol 12 (5) ◽  
pp. 1539-1549 ◽  
Author(s):  
J. C. Chen ◽  
W. S. Huang ◽  
C. D. Jan ◽  
Y. H. Yang

Abstract. This study analyzed the variability in the number of rainfall events related to debris-flow occurrence in the Chenyulan stream watershed located in central Taiwan. Rainfall data between 1970 and 2009 measured at three meteorological stations nearby/in the watershed were collected and used to determine the corresponding regional average rainfall for the watershed. Data on debris-flow events between 1985 and 2009 were collected and used to study their dependence on regional average rainfall. The maximum 24-h regional rainfall Rd was used to analyze the number of rainfall events Nr, the number of rainfall events that triggered debris flows Nd, and the probability of debris-flows occurrences P. The variation trends in Nr, Nd and P over recent decades under three rainfall conditions (Rd > 20, 230, and 580 mm) related to debris-flow occurrence were analyzed. In addition, the influences of the Chi-Chi earthquake on Nd and P were presented. The results showed that the rainfall events with Rd > 20 mm during the earthquake-affected period (2000–2004) strongly responded to the increases in the average number of rainfall events that triggered debris flows and the average probability of debris-flows occurrences. The number of rainfall events with Rd > 230 mm (the lower boundary for the rainfall ever triggering debris flow before the Chi-Chi earthquake), and Rd > 580 mm (the lower boundary for extreme rainfall ever triggering numerous debris flows) in the Chenyulan stream watershed increased after 2000. The increase in the number of extreme rainfall events with Rd > 580 mm augmented the number of rainfall events ever triggering numerous debris flows in the last decade. The increase in both the number of rainfall events that ever triggered debris flows and the probability of debris-flow occurrences was greater in the last decade (2000–2009) than in 1990–1999.


Author(s):  
Wahyu Wilopo ◽  
Teuku Faisal Fathani

Landslides frequently occur in Indonesia, especially in the geothermal areas located on Sumatra's mountainous island. On April 28, 2016, around 04:30 Western Indonesia Time, a landslide-induced debris flow occurred in Lebong District, Bengkulu Province, Indonesia. The source area of the landslide was located at Beriti Hill on the Bukit Barisan Mountain Range. It resulted in 6 fatalities and damage to infrastructures such as geothermal facilities, roads, water pipes, houses, and bridges. Subsequent landslides and debris flows occurred on April 30, May 2, and 3, 2016. Therefore, this study aims to examine the mechanism and to know the most significant contributing factor to the Beriti Hill landslide. Site investigation, soil sampling, XRD analysis, and Lidar analysis were carried out in the research. Beriti Hill is a geothermal area with many manifestations and is composed of volcanic rocks. Alteration processes produced a thick layer of soil from volcanic rocks. The thick soil dominated by clay minerals and steep slopes is the dominant controlling factor of a landslide, triggered by high rainfall intensity. Debris flows are recurring events based on the Air Kotok river's stratigraphic data downstream of the landslide area. The debris flow material is toxic due to the low pH from the geothermal process. Therefore, the alluvial fan deposit area from Beriti Hill debris flow is a hazard zone and unsuitable for settlement and agriculture.


2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 750
Author(s):  
Antonio Pasculli ◽  
Jacopo Cinosi ◽  
Laura Turconi ◽  
Nicola Sciarra

The current climate change could lead to an intensification of extreme weather events, such as sudden floods and fast flowing debris flows. Accordingly, the availability of an early-warning device system, based on hydrological data and on both accurate and very fast running mathematical-numerical models, would be not only desirable, but also necessary in areas of particular hazard. To this purpose, the 2D Riemann–Godunov shallow-water approach, solved in parallel on a Graphical-Processing-Unit (GPU) (able to drastically reduce calculation time) and implemented with the RiverFlow2D code (version 2017), was selected as a possible tool to be applied within the Alpine contexts. Moreover, it was also necessary to identify a prototype of an actual rainfall monitoring network and an actual debris-flow event, beside the acquisition of an accurate numerical description of the topography. The Marderello’s basin (Alps, Turin, Italy), described by a 5 × 5 m Digital Terrain Model (DTM), equipped with five rain-gauges and one hydrometer and the muddy debris flow event that was monitored on 22 July 2016, were identified as a typical test case, well representative of mountain contexts and the phenomena under study. Several parametric analyses, also including selected infiltration modelling, were carried out in order to individuate the best numerical values fitting the measured data. Different rheological options, such as Coulomb-Turbulent-Yield and others, were tested. Moreover, some useful general suggestions, regarding the improvement of the adopted mathematical modelling, were acquired. The rapidity of the computational time due to the application of the GPU and the comparison between experimental data and numerical results, regarding both the arrival time and the height of the debris wave, clearly show that the selected approaches and methodology can be considered suitable and accurate tools to be included in an early-warning system, based at least on simple acoustic and/or light alarms that can allow rapid evacuation, for fast flowing debris flows.


Sign in / Sign up

Export Citation Format

Share Document