scholarly journals The Photosynthetic Characteristics of Different Purple Peppers

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 304
Author(s):  
Yu Huang ◽  
Xiaohui Wang ◽  
Wu Miao ◽  
Huan Suo ◽  
Canfang Fu ◽  
...  

The yield of pepper with purple leaves (PF) is low, while the pepper with green leaves (GM) is not resistant to strong light and high temperature. In this study, we analyzed the photosynthesis characteristics and genetic stability of their hybrid progenies using PF(CS3) and GM(SJ11-3) as controls. Based on the decreased purple color and increased green color, the hybrid pepper was divided into five groups: Z1, Z2, Z3, Z4 and Z5. Results showed that as the purple color increased, the anthocyanin content in leaves increased. Simultaneously, we found that PF exhibited higher resistance to strong light and high temperature. Thus, the purple hybrid progenies with higher photosynthetic rate were recommended, as they showed higher yield and better resistance to strong light and high temperature.

2019 ◽  
Vol 60 (9) ◽  
pp. 2086-2099 ◽  
Author(s):  
Norikazu Ohnishi ◽  
Fiona Wacera W. ◽  
Wataru Sakamoto

Abstract Sorghum [Sorghum bicolor (L.) Moench] is a C4 crop known to be adaptable to harsh environments such as those under high temperature and water deficit. In this study, we focused on a Japanese sorghum landrace Takakibi (NOG) and employed chlorophyll fluorescence measurements to assess its response to environmental stress. Comparison of photosynthetic rate evaluated using two parameters (effective quantum yield and electron transfer rate) indicated that NOG showed less activity than BTx623 in the pre-flowering stage, which was consistent with the higher susceptibility of NOG seedlings to drought than BTx623. The observed differences in photosynthetic activity between the two cultivars were detectable without drought conditions on days with high temperature and strong light. Interestingly, the photosynthetic activity of NOG leaves in stress conditions increased soon after heading, and the trend was similar to that in BTx642, a well-characterized post-flowering drought-tolerant cultivar. In contrast, BTx623 showed a gradual decline in photosynthetic rate. Thus, we inferred that Japanese Takakibi has the potential to show pre-flowering drought susceptibility and post-flowering drought tolerance, through which it adapts to local climates with high temperature and strong light at harvest.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


2004 ◽  
Vol 42 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Jincai LI ◽  
Xiheng ZHAO ◽  
Shuichiro MATSUI ◽  
Shigenori MAEZAWA

2010 ◽  
Vol 37 (11) ◽  
pp. 1071 ◽  
Author(s):  
Maduraimuthu Djanaguiraman ◽  
P. V. Vara Prasad

Leaf senescence in soybean (Glycine max L. Merr.) occurs during the later stages of reproductive development and can be triggered or enhanced by high temperature (HT) stress. Ethylene production can trigger premature leaf senescence, but it is unclear whether HT stress produces ethylene and the subsequent influence on physiology and yield of soybean is also uncertain. We hypothesised that ethylene produced under HT stress is involved in premature leaf senescence and that use of an ethylene perception inhibitor would influence physiology and yield. Objectives of this study were to (1) quantify HT-stress-induced ethylene production; (2) quantify effects of HT stress and application of an ethylene perception inhibitor (1-methylcyclopropene; 1-MCP) on source strength traits such as photosynthetic rate, oxidant production, membrane damage and sugar accumulation; and (3) evaluate efficacy of 1-MCP on minimising HT-stress-induced effects on physiological and yield traits. Soybean plants were exposed to HT (38/28°C) or optimum temperature (OT, 28/18°C) for 14 days at the beginning of pod set. Plants at each temperature were treated with 1 μg L–1 1-MCP or left untreated (control). HT stress enhanced ethylene production rates in leaves and pods by 3.2- and 2.1-fold over OT. HT stress decreased photochemical efficiency (5.8%), photosynthetic rate (12.7%), sucrose content (21.5%), superoxide dismutase (13.3%), catalase (44.6%) and peroxidase (42.9%) enzymes activity and increased superoxide radical (63%) and hydrogen peroxide (70.4%) content and membrane damage (54.7%) compared with OT. Application of 1-MCP decreased ethylene production rate and premature leaf senescence traits by enhancing the antioxidant defence system. HT stress decreased seed set percentage (18.6%), seed size (64.5%) and seed yield plant–1 (71.4%) compared with OT, however, foliar spray of 1-MCP increased the seed set percent and seed size, which resulted in a higher yield than the unsprayed control. The present study showed HT stress increased ethylene production rate, which triggered premature leaf senescence, whereas 1-MCP application reduced or postponed premature leaf senescence traits by inhibiting ethylene production.


2015 ◽  
Vol 33 (6) ◽  
pp. 860-868 ◽  
Author(s):  
Moon Sook Son ◽  
Yoo Gyeong Park ◽  
Iyyakkannu Sivanesan ◽  
Chung Ho Ko ◽  
Byoung Ryong Jeong

2021 ◽  
Vol 50 (4) ◽  
pp. 1127-1132
Author(s):  
Wubo Li ◽  
Meng Li ◽  
Yunshuo Xu ◽  
Yan Shi

Effects of different dosages of potassium silicate fertilizer on photosynthetic characteristics and yield of winter wheat under field conditions were studied. Four different dosages: 0, 45, 90 and 135kg/ha were applied. Results showed that the chlorophyll content, net photosynthetic rate of wheat flag leaf firstly increased and then decreased with the increase of levels of potassium silicate fertilizer. By the change of SPAD values after flowering, when the application of potassium silicate fertilizer was 90 kg/ha, the existence time of chlorophyll in flag leaf was significantly long, and the net photosynthetic rate was significantly increased. The 1000-grain weight of winter wheat significantly increased and the yield the highest. Overall, when the applied amount of potassium silicate fertilizer was 90 kg/ha, the performances of winter wheat were best. Bangladesh J. Bot. 50(4): 1127-1132, 2021 (December)


2012 ◽  
Vol 36 (4) ◽  
pp. 461-468 ◽  
Author(s):  
Joon-Soo Lee ◽  
Dong-Yun Lee ◽  
Jang-Ho Lee ◽  
In-Ok Ahn ◽  
Jun-Guy In

Sign in / Sign up

Export Citation Format

Share Document