scholarly journals QTL Analysis of the Content of Some Bioactive Compounds in Brassica rapa L. Grown under Light Culture Conditions

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 583
Author(s):  
Ksenia V. Egorova ◽  
Nadezhda G. Sinyavina ◽  
Anna M. Artemyeva ◽  
Natalia V. Kocherina ◽  
Yuriy V. Chesnokov

The article presents the results of biochemical and QTL (Quantitative Trait Loci) analysis of dry matter content, nutrient and biologically active compounds: sugars, ascorbic acid, chlorophylls a and b, anthocyanins and carotenoids in populations of doubled haploid lines of leaf, root crops, and oilseeds of the Brassica rapa L. species grown in optimal light culture conditions, but with different photoperiod durations. The purpose of this study was to evaluate the effect of the photoperiod on the transition to bolting and the accumulation of biologically active substances, as well as how the localization and identification of chromosomal loci determined the content of certain phytochemicals. The influence of the length of daylight hours on the content of components of the biochemical composition was assessed. It was shown that growing under conditions of a 16 h photoperiod increased the content of dry matter, sugars, vitamin C, and anthocyanins. On the contrary, the content of photosynthetic pigments was higher under the conditions of a 12 h photoperiod. Valuable lines that can be sources of biologically active compounds were revealed. Based on the results of the obtained data, 102 QTLs were mapped, which determine the manifestation of the studied biochemical quality traits in the B. rapa doubled haploid lines under conditions of short and long daylight hours. Molecular markers genetically linked to the selected QTLs were determined. It was revealed that the identified loci controlling all the studied biochemical traits were mainly in the fifth, sixth, seventh, and ninth linkage groups, which correlated with the data obtained in the field and greenhouse. Most of the identified loci controlled several studied traits simultaneously. The identified QTLs and identified molecular markers are of interest for further study of the genetic control of the economically valuable traits determined by them and for the implementation of marker-assisted selection in B. rapa. The data obtained can be used in genetic and breeding work, including for the obtaining of new genotypes, lines and cultivars with a valuable biochemical composition, adapted for cultivation under specific photoperiodic conditions.

2020 ◽  
Vol 17 (2) ◽  
pp. 172-178
Author(s):  
N. O. Pushkarova ◽  
T. M. Kyrpa-Nesmiian ◽  
M. V. Kuchuk

The aim of the research was to establish efficient microclonal propagation conditions of endangered Crambe mitridatis plants in vitro and to study the possible effect of aseptic cultivation on biochemical composition (hydroxycinnamic acids, flavonoids, phenolic compounds) of plants. Methods. In vitro plant culture methods were applied. Seeds were used for aseptic culture initiation. Morphogenic potential of root, leaf and petiole explants was studied on Murashige-Skoog medium with addition of plant growth regulators. The content of biologically active compounds was measured using spectrometry in plants grown in aseptic conditions and in the greenhouse. Results. Morphogenic potential of root, leaf and petiole explants was studied and the highest regeneration frequency of plantlets was established for root explants (80 %), for petiole explants (50 %) and the lowest for leaf explants (20 %). It was found that plants cultivated in aseptic conditions have higher hydroxycinnamic acids, flavonoids and phenolic compounds compared to plants grown in vivo. Conclusions. It is advisable to multiply C. mitridatis plants in vitro via root and petiole explants. Aseptic cultivation contributes to synthesis of biologically active compounds (auxin synergists) in C. mitridatis plants.Keywords: in vitro culture, hydroxycinnamic acids, flavonoids, phenolic compounds, Crambe mіtridatis.


2018 ◽  
Author(s):  
Honggui Lv ◽  
Li-Jun Xiao ◽  
Dongbing Zhao ◽  
Qi-Lin Zhou

Herein, we realized the first linear-selective hydroarylation of unactivated alkenes and styrenes with organoboronic acids by introducing directing groupon alkenes. Our method is highly efficient and scalable, and provides a modular route to assemble structurally diverse alkylarenes, especially for γ-aryl butyric acid derivatives, which have been widely utilized as chemical feedstocks to access multiple marketed drugs, and biologically active compounds.<br>


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2020 ◽  
Vol 17 (7) ◽  
pp. 525-534 ◽  
Author(s):  
Nevin Arıkan Ölmez ◽  
Faryal Waseer

Background: Urea, thiourea, and 1,2,4-oxadiazole compounds are of great interest due to their different activities such as anti-inflammatory, antiviral, analgesic, fungicidal, herbicidal, diuretic, antihelminthic and antitumor along with antimicrobial activities. Objective: In this work, we provide a new series of potential biologically active compounds containing both 1,2,4-oxadiazole and urea/thiouprea moiety. Materials and Methods: Firstly, 5-chloromethyl-3-aryl-1,2,4-oxadiazoles (3a-j) were synthesized from the reaction of different substituted amidoximes (2a-j) and chloroacetyl chloride in the presence of pyridine by conventional and microwave-assisted methods. In the conventional method, 1,2,4-oxadiazoles were obtained in two steps. O-acylamidoximes obtained in the first step at room temperature were heated in toluene for an average of one hour to obtain 1,2,4-oxadiazoles. The yields varied from 70 to 96 %. 1,2,4-oxadiazoles were obtained under microwave irradiation in a single step in a 90-98 % yield at 160 °C in five minutes. 5-aminomethyl-3-aryl-1,2,4- oxadiazoles (5a-j) were obtained by Gabriel amine synthesis in two steps from corresponding 5-chloromethyl-3- aryl-1,2,4-oxadiazoles. Finally, twenty new urea (6a-j) and thiourea (7a-j) compounds bearing oxadiazole ring were synthesized by reacting 5-aminomethyl-3-aryl-1,2,4-oxadiazoles with phenyl isocyanate and isothiocyanate in tetrahydrofuran (THF) at room temperature with average yields (40-70%). Results and Discussions: An efficient and rapid method for the synthesis of 1,2,4-oxadiazoles from the reaction of amidoximes and acyl halides without using any coupling reagent under microwave irradiation has been developed, and twenty new urea/thiourea compounds bearing 1,2,4-oxadiazole ring have been synthesized and characterized. Conclusion: We have synthesized a new series of urea/thiourea derivatives bearing 1,2,4-oxadiazole ring. Also facile synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from amidoximes and acyl chlorides under microwave irradiation was reported. The compounds were characterized using FTIR, 1H NMR, 13C NMR, and elemental analysis techniques.


Author(s):  
Anna A. Makhova ◽  
Eugenia V. Shikh ◽  
Tatiana V. Bulko ◽  
Zhanna M. Sizova ◽  
Victoria V. Shumyantseva

Abstract Background Cytochrome P450s (CYPs, EC 1.14.14.1) are the main enzymes of drug metabolism. The functional significance of CYPs also includes the metabolism of foreign chemicals and endogenic biologically active compounds. The CYP3A4 isoform contributes to the metabolism of about half of all marketed medicinal preparations. The aim of this study was to investigate the effects of two biologically active compounds: 2-aminoethane-sulfonic acid (taurine) and 3-hydroxy-4-trimethylaminobutyrate (L-carnitine) on urinary 6β-hydroxycortisol/cortisol (6β-OHC/cortisol) metabolic ratio as a biomarker of the CYP3A4 activity of healthy volunteers. Taurine is used for the treatment of chronic heart failure and liver disease. Cardiologists, nephrologists, neurologists, gerontologists in addition to the main etiopathogenetic therapies, use L-carnitine. The quantification of the 6β-OHC/cortisol metabolic ratio as a biomarker of CYP3A4 activity in human urine was used for the assessment of CYP3A4 catalytic activity as a non-invasive test. Methods The study included 18 healthy male volunteers (aged from 18 to 35 years old). The volunteers took taurine in a dose of 500 mg twice a day or L-carnitine in a dose of 2.5 mL 3 times a day for 14 consecutive days. The test drug was given 20 min before meals. The collection of urine samples was performed before and after 3, 7, 10, and 14 days after taurine intake. The metabolic ratio of 6β-OHC/cortisol in morning spot urine samples was studied by the liquid chromatography/mass spectroscopy (LC/MS) method. Results The ratio of 6-6β-OHC/cortisol was used as a biomarker to study the taurine and L-carnitine influence on CYP3A4 metabolism of cortisol. The ratio of urinary 6β-OCH/cortisol in the morning urine samples of volunteers before the beginning of taurine therapy (baseline ratio) was 2.71 ± 0.2. Seven days after the administration of taurine in a dose of 500 mg twice a day, the 6β-OCH/cortisol ratio was 3.3 ± 0.2, which indicated the increased catalytic activity of CYP3A4 towards cortisol. As for the L-carnitine supplementation, analysis of the 6β-OCH/cortisol ratio in the urine for 14 days did not show any significant changes in this baseline ratio, indicating the lack of L-carnitine influence on the catalytic activity of CYP3A4 to cortisol. Conclusions The results obtained demonstrated the influence of taurine on 6β-OCH/cortisol metabolic ratio as a biomarker of CYP3A4 catalytic activity to cortisol. L-carnitine did not affect the activity of CYP3A4. The lack of a clinically meaningful effect of L-carnitine was established.


Sign in / Sign up

Export Citation Format

Share Document