scholarly journals The Austronesian Advantage: Natural Selection and Linguistic Diversity

Humans ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 11-17
Author(s):  
Michael St. Clair

The “Austronesian advantage” suggests that Austronesian-speaking populations in Melanesia are resistant to tropical splenomegaly syndrome, a medical condition linked to chronic exposure to malaria. This hypothesis was proposed by Kevin M. Kelly in his 1988 dissertation, a subsequent 1990 paper, and a 1993 paper co-published with Jeffrey Clark. I now update the Austronesian advantage hypothesis with additional linguistic, anthropological, and genetic data. I find that cultural adaptations cannot fully explain the Austronesian expansion. Rather, the Austronesian advantage, a classic example of natural selection, completes the picture by connecting the Austronesian expansion with greater reproductive success. I also strengthen the Austronesian advantage hypothesis with data from Tibet. The correlation between language expansion and natural selection extends well beyond the Austronesian world.

2021 ◽  
pp. 136843102110497
Author(s):  
Shanyang Zhao

Natural selection is the main mechanism that drives the evolution of species, including human societies. Under natural selection, human species responds through genetic and cultural adaptations to internal and external selection pressures for survival and reproductive success. However, this theory is ineffective in explaining human societal evolution in the Holocene and a cultural selection argument has been made to remedy the theory. The present article provides a critique of the cultural selection argument and proposes an alternative conception that treats human self-selection as an emergent mechanism of human societal evolution characterized by a new type of selection pressure and a separate fitness criterion. Specifically, the evolution of human societies is divided into two major periods, each driven by a different mode of selection: natural selection acting on genes and cultures for survival and reproductive success prior to the Neolithic Revolution, and human self-selection acting on cultures – and potentially genes as well – for thrival and prosperous living after the Neolithic Revolution. The conditions for the transition from the first mode of selection to the second and the implications of this transition for social research are also discussed.


2015 ◽  
Vol 282 (1806) ◽  
pp. 20150211 ◽  
Author(s):  
Gert Stulp ◽  
Louise Barrett ◽  
Felix C. Tropf ◽  
Melinda Mills

The Dutch are the tallest people on earth. Over the last 200 years, they have grown 20 cm in height: a rapid rate of increase that points to environmental causes. This secular trend in height is echoed across all Western populations, but came to an end, or at least levelled off, much earlier than in The Netherlands. One possibility, then, is that natural selection acted congruently with these environmentally induced changes to further promote tall stature among the people of the lowlands. Using data from the LifeLines study, which follows a large sample of the population of the north of The Netherlands ( n = 94 516), we examined how height was related to measures of reproductive success (as a proxy for fitness). Across three decades (1935–1967), height was consistently related to reproductive output (number of children born and number of surviving children), favouring taller men and average height women. This was despite a later age at first birth for taller individuals. Furthermore, even in this low-mortality population, taller women experienced higher child survival, which contributed positively to their increased reproductive success. Thus, natural selection in addition to good environmental conditions may help explain why the Dutch are so tall.


Parasitology ◽  
1983 ◽  
Vol 86 (2) ◽  
pp. 335-344 ◽  
Author(s):  
D. J. Minchella ◽  
P. T. Loverde

SUMMARYA method of interrupting the life-cycle of the human blood fluke Schistosoma by increasing the proportion of genetically insusceptible intermediate host snails in natural populations was first proposed nearly 25 years ago. The method assumes that insusceptible snails will be at a selective advantage over susceptible snails when the schistosome parasite is present, and therefore natural selection will act to increase the proportion of alleles for insusceptibility. A major objection to the proposed technique is ‘If insusceptible snails are at a selective advantage, then why are they not predominant in natural populations that transmit disease?’ One explanation of this paradox is that insusceptibility may be associated with a disadvantageous character or a physiological defect. This study tests this hypothesis by measuring the relative reproductive success of susceptible and insusceptible snails under controlled conditions. Results indicate that insusceptible (unsuitable) snails are negatively affected in the presence of either susceptible snails or schistosome parasites. Furthermore, in the presence of both susceptible snails and schistosome parasites, insusceptible snails are selectively disadvantaged compared to susceptible snails. These results obtained under laboratory-controlled conditions suggest a plausible answer as to why insusceptible snails are not predominant in natural populations that transmit disease.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170706 ◽  
Author(s):  
Valentin Thouzeau ◽  
Philippe Mennecier ◽  
Paul Verdu ◽  
Frédéric Austerlitz

Linguistic and genetic data have been widely compared, but the histories underlying these descriptions are rarely jointly inferred. We developed a unique methodological framework for analysing jointly language diversity and genetic polymorphism data, to infer the past history of separation, exchange and admixture events among human populations. This method relies on approximate Bayesian computations that enable the identification of the most probable historical scenario underlying each type of data, and to infer the parameters of these scenarios. For this purpose, we developed a new computer program PopLingSim that simulates the evolution of linguistic diversity, which we coupled with an existing coalescent-based genetic simulation program, to simulate both linguistic and genetic data within a set of populations. Applying this new program to a wide linguistic and genetic dataset of Central Asia, we found several differences between linguistic and genetic histories. In particular, we showed how genetic and linguistic exchanges differed in the past in this area: some cultural exchanges were maintained without genetic exchanges. The methodological framework and the linguistic simulation tool developed here can be used in future work for disentangling complex linguistic and genetic evolutions underlying human biological and cultural histories.


Author(s):  
Iain Mathieson ◽  
Felix R. Day ◽  
Nicola Barban ◽  
Felix C. Tropf ◽  
David M. Brazel ◽  
...  

AbstractIdentifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and also identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identify 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology across the life course, including puberty timing, age at first birth, sex hormone regulation and age at menopause. Missense alleles in ARHGAP27 were associated with increased NEB but reduced reproductive lifespan, suggesting a trade-off between reproductive ageing and intensity. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Accordingly, we find that NEB-increasing alleles have increased in frequency over the past two generations. Furthermore, integration with data from ancient selection scans identifies a unique example of an allele—FADS1/2 gene locus—that has been under selection for thousands of years and remains under selection today. Collectively, our findings demonstrate that diverse biological mechanisms contribute to reproductive success, implicating both neuro-endocrine and behavioural influences.


2013 ◽  
Vol 70 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Melissa L. Evans ◽  
Bryan D. Neff ◽  
Daniel D. Heath

Sexual selection is recognized as an important evolutionary force in salmon. However, relatively little is known about variation in sexual selection pressures across salmon populations or the potential role of natural selection as a driver of adaptive mating patterns. Here, we examine mating behaviour and correlates of reproductive success in Chinook salmon (Oncorhynchus tshawytscha) from the Quinsam and Little Qualicum rivers in British Columbia, Canada — two populations for which we have previously found evidence of natural selection operating on major histocompatibility complex (MHC) genes. In both populations, males courted females and exhibited dominance behaviour towards other males, and the frequency of each behaviour was positively associated with reproductive success. Males were more aggressive towards females with whom they would produce offspring of low or high MHC class II diversity, and the offspring of males from the Quinsam River exhibited higher diversity at the MHC class I than expected. We discuss our results in relation to local natural selection pressures on the MHC and the potential for MHC-dependent mate choice.


2019 ◽  
Vol 81 (2) ◽  
pp. 115-119
Author(s):  
Jay Y. S. Hodgson

Students often have difficulty understanding the underpinning mechanisms of natural selection because they lack the means to directly test hypotheses within the classroom. Computer simulations are ideal platforms to allow students to manipulate variables and observe evolutionary outcomes; however, many available models solve the scenario for the users without revealing the evolutionarily significant calculations. I developed a simplified bioenergetics model of a hammerhead shark for teaching natural selection that allows the users to manipulate variables and see the impacts of modeling while solving for the evolutionary consequences. Students generate variation within the population by controlling cephalofoil widths and swimming speeds of an individual, which affect its ability to detect and capture prey at the expense of energy lost as drag from swimming. The trade-off between energy gained from successful predation and energy lost from metabolic expenditures dictates rates of reproduction. By manipulating a subset of factors that influence differential reproductive success, students gain an improved understanding of natural selection.


2007 ◽  
Vol 362 (1485) ◽  
pp. 1531-1543 ◽  
Author(s):  
Alasdair I Houston ◽  
John M McNamara ◽  
Mark D Steer

We expect that natural selection should result in behavioural rules which perform well; however, animals (including humans) sometimes make bad decisions. Researchers account for these with a variety of explanations; we concentrate on two of them. One explanation is that the outcome is a side effect; what matters is how a rule performs (in terms of reproductive success). Several rules may perform well in the environment in which they have evolved, but their performance may differ in a ‘new’ environment (e.g. the laboratory). Some rules may perform very badly in this environment. We use the debate about whether animals follow the matching law rather than maximizing their gains as an illustration. Another possibility is that we were wrong about what is optimal. Here, the general idea is that the setting in which optimal decisions are investigated is too simple and may not include elements that add extra degrees of freedom to the situation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2904 ◽  
Author(s):  
Robert F. Lynch ◽  
Emily C. Lynch

BackgroundDemonstrating the impact that parents have on the fitness of their children is a crucial step towards understanding how parental investment has affected human evolution. Parents not only transfer genes to their children, they also influence their environments. By analyzing reproductive patterns within and between different categories of close relatives, this study provides insight into the genetic and environmental effects that parents have on the fitness of their offspring.MethodsWe use data spanning over two centuries from an exceptionally accurate Icelandic genealogy, Íslendingabók, to analyze the relationship between the fertility rates of close relatives. Also, using genetic data, we determine narrow sense heritability estimates (h2) to further explore the genetic impact on lifetime reproductive success. Finally, we construct four simulations to model the expected contribution of genes and resources on reproductive success.ResultsThe relationship between the reproduction of all full sibling pairs was significant and positive across all birth decades (r = 0.19) while the reproductive relationship between parents and offspring was often negative across many decades and undetectable overall (r = 0.00) (Fig. 1 and Table 1). Meanwhile, genetic data among 8,456 pairs of full siblings revealed a narrow sense heritability estimate (h2) of 0.00 for lifetime reproductive success. A resources model (following the rule that resources are transmitted from parents to children, distributed equally among siblings, and are the only factor affecting reproductive success) revealed a similar trend: a negative relationship between parent and offspring reproduction (r =  − 0.35) but a positive relationship among full siblings (r = 0.28). The relationship between parent and offspring lifetime reproductive success (LRS) and full sibling LRS was strongly and positively correlated across time (r = 0.799,p < 0.001). Similarly, the LRS among full siblings was positively correlated with both the LRS among half siblings (r = 0.532,p = 0.011) and the relationship between the LRS of aunts and uncles with their nieces and nephews (r = 0.438,p = 0.042).DiscussionWe show that an individual’s lifetime reproductive success is best predicted by the reproduction of their full and half siblings, but not their parents, grandparents or aunts and uncles. Because all siblings share at least one parent, we believe parental investment has had an important impact on fitness. Overall, these results indicate that direct parental investment, but not genes, is likely to have had an important and persistent impact on lifetime reproductive success across more than two centuries of Icelandic history.


Sign in / Sign up

Export Citation Format

Share Document