scholarly journals Small-Scale Comparative Genomic Analysis of Listeria monocytogenes Isolated from Environments of Salmon Processing Plants and Human Cases in Norway

Hygiene ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 43-55
Author(s):  
Trond Løvdal ◽  
Lin T. Brandal ◽  
Arvind Y. M. Sundaram ◽  
Umaer Naseer ◽  
Bjørn Roth ◽  
...  

Listeria monocytogenes is a food-borne bacterium that give rise to the potentially life-threatening disease listeriosis. Listeriosis has been mandatorily notifiable in Norway since 1991. All clinical L. monocytogenes isolates are sent to the Norwegian Institute of Public Health (NIPH) for typing. Since 2005 Multi-Locus Variable number tandem repeats Analysis (MLVA) has been used for typing but was recently replaced by whole genome sequencing using core genome Multi-Locus Sequence Typing (cgMLST). In the present study, L. monocytogenes isolates collected at salmon processing plants in Norway in 2007 (n = 12) and 2015 (n = 14) were first subject to MLVA. Twelve clinical L. monocytogenes isolates with matching MLVA profile and sampling time were selected from the strain collection at NIPH. Twenty-one isolates from the salmon processing plants and all clinical isolates (n = 12) were whole genome sequenced and compared using cgMLST and in silico detection of virulence genes. cgMLST revealed four pairs of environmental–human isolates with ≤10 allelic differences over 1708 genes, indicating that they may be assigned as clonal, with the implication that they are descended from the same recent ancestor. No relevant difference in carriage of virulence genes was found between environmental or human isolates. The present study shows that L. monocytogenes strains that genetically resemble contemporary isolates from human listeriosis circulate in Norwegian salmon slaughterhouses, and carry the same virulence genes.

2014 ◽  
Vol 81 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Bjørn C T Schirmer ◽  
Even Heir ◽  
Bjørn-Arne Lindstedt ◽  
Trond Møretrø ◽  
Solveig Langsrud

The aim of the study was to investigate how the use of fresh cheese brines compared with used brines and various combinations of pH and NaCl concentrations affected the survival of Listeria monocytogenes. Cheese brines from five Norwegian small scale cheese producers were analysed and showed great variations in pH (4·54–6·01) and NaCl concentrations (14·1–26·9 %). The survival of five strains of List. monocytogenes (two clinical isolates, two food isolates and one animal isolate) in four different cheese brines (three used and one fresh) was investigated. Results showed significant differences in survival both depending on the strains and the brines. Strains of human outbreak listeriosis cases showed greater ability to survive in the brines compared with food isolates and a List. monocytogenes reference strain (1–2 log10 difference after 200 d). All strains showed highest survival in the freshly prepared brine compared with the used brines. Molecular typing by multiple locus variable number tandem repeats analysis (MLVA) showed that there were no detectable alterations in the examined variable number tandem repeats of the genome in five strains after 200 d storage in any of the salt brines. Combined effects of pH (4·5, 5·25 and 6·0) and NaCl (15, 20 and 25 %) in fresh, filter sterilised brines on the survival of List. monocytogenes were examined and results showed that pathogen populations decreased over time in all brines. Death rates at any given NaCl concentration were highest at low pH (4·5) and death rates at any given pH were highest at low NaCl concentrations (15 %). In conclusion, the use of used brines reduced the survival of List. monocytogenes and a combination of low pH (4·5) and low salt concentrations (15 %) decreased the risk of List. monocytogenes survival compared with higher pH (5·25 or 6·0) and higher NaCl concentrations (20 or 25 %).


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhi-Jun Zhao ◽  
Ji-Quan Li ◽  
Li Ma ◽  
Hong-Mei Xue ◽  
Xu-Xin Yang ◽  
...  

Abstract Background The prevalence of human brucellosis in Qinghai Province of China has been increasing rapidly, with confirmed cases distributed across 31 counties. However, the epidemiology of brucellosis transmission has not been fully elucidated. To characterize the infecting strains isolated from humans, multiple-locus variable-number tandem repeats analysis (MLVA) and whole-genome single-nucleotide polymorphism (SNP)-based approaches were employed. Methods Strains were isolated from two males blood cultures that were confirmed Brucella melitensis positive following biotyping and MLVA. Genomic DNA was extracted from these two strains, and whole-genome sequencing was performed. Next, SNP-based phylogenetic analysis was performed to compare the two strains to 94 B. melitensis strains (complete genome and draft genome) retrieved from online databases. Results The two Brucella isolates were identified as B. melitensis biovar 3 (QH2019001 and QH2019005) following conventional biotyping and were found to have differences in their variable number tandem repeats (VNTRs) using MLVA-16. Phylogenetic examination assigned the 96 strains to five genotype groups, with QH2019001 and QH2019005 assigned to the same group, but different subgroups. Moreover, the QH2019005 strain was assigned to a new subgenotype, IIj, within genotype II. These findings were then combined to determine the geographic origin of the two Brucella strains. Conclusions Utilizing a whole-genome SNP-based approach enabled differences between the two B. melitensis strains to be more clearly resolved, and facilitated the elucidation of their different evolutionary histories. This approach also revealed that QH2019005 is a member of a new subgenotype (IIj) with an ancient origin in the eastern Mediterranean Sea.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuang Wu ◽  
Jinyuan Chen ◽  
Ying Li ◽  
Ai Liu ◽  
Ao Li ◽  
...  

Abstract Background Although plastomes are highly conserved with respect to gene content and order in most photosynthetic angiosperms, extensive genomic rearrangements have been reported in Fabaceae, particularly within the inverted repeat lacking clade (IRLC) of Papilionoideae. Two hypotheses, i.e., the absence of the IR and the increased repeat content, have been proposed to affect the stability of plastomes. However, this is still unclear for the IRLC species. Here, we aimed to investigate the relationships between repeat content and the degree of genomic rearrangements in plastomes of Medicago and its relatives Trigonella and Melilotus, which are nested firmly within the IRLC. Results We detected abundant repetitive elements and extensive genomic rearrangements in the 75 newly assembled plastomes of 20 species, including gene loss, intron loss and gain, pseudogenization, tRNA duplication, inversion, and a second independent IR gain (IR ~ 15 kb in Melilotus dentata) in addition to the previous first reported cases in Medicago minima. We also conducted comparative genomic analysis to evaluate plastome evolution. Our results indicated that the overall repeat content is positively correlated with the degree of genomic rearrangements. Some of the genomic rearrangements were found to be directly linked with repetitive sequences. Tandem repeated sequences have been detected in the three genes with accelerated substitution rates (i.e., accD, clpP, and ycf1) and their length variation could be explained by the insertions of tandem repeats. The repeat contents of the three localized hypermutation regions around these three genes with accelerated substitution rates are also significantly higher than that of the remaining plastome sequences. Conclusions Our results suggest that IR reemergence in the IRLC species does not ensure their plastome stability. Instead, repeat-mediated illegitimate recombination is the major mechanism leading to genome instability, a pattern in agreement with recent findings in other angiosperm lineages. The plastome data generated herein provide valuable genomic resources for further investigating the plastome evolution in legumes.


Author(s):  
Mehmet Demirci ◽  
Akın Yiğin ◽  
Fadile Yıldız Zeyrek

Objective: Shiga toxin-producing E. coli (STEC) strains are important foodborne pathogens. Significant outbreaks with STEC strains can be encountered, even if the geography, time or resources were different. The aim of our in silico study was to compare the virulance factors and phylogeny of STEC strains such as EDL933 and Sakai, which have been identified as an agent in important outbreaks in different parts of the world and whole genomic data were in open databases. Method: Genomic NCBI data of eight strains were included in our study, including seven different STEC strains associated with significant epidemics in different parts of the world, and one supershedder strain obtained from cattle feces. Results: According to phylogeny analysis, the most similar strain to EDL933 strain was TW14588, with 96.4% similarity. The most distant similarity was Sakai strains with 79.2%. According to the virulence genes analysis; the presence of 333 genes that constitute virulence factors under nine headings were detected. In the first STEC origin, EDL933, 45% of all virulence genes were found to be active. Adherence genes such as Ecp, Elf, Hcp and toxin genes such as clyA were active in all strains except stx genes. Conclusion: In our in silico study of comparative genomic analysis of STEC strains which are associated with outbreaks, it was determined that STEC strains used different virulence genes besides the stx gene. Indeed, they used certain virulence genes, even their sources, time and locations were different, in the pathogenesis


2020 ◽  
Author(s):  
Changle Zhao ◽  
Yinping Wan ◽  
Xiaojie Cao ◽  
Huili Zhang ◽  
Xin Bao

Abstract Background The microbial synthesis of pyrroloquinoline quinone (PQQ) and Coenzyme Q10 (CoQ10) remains the most promising industrial production route. Methylobacterium has been used to generate PQQ and other value-added chemicals from cheap carbon feedstocks.However, the low PQQ and CoQ10 production capacity of the Methylobacterium strains is a major limitation The regulation mechanism for PQQ and CoQ10 biosynthesis in this strain has also not been fully elucidated. Results Methylobacterium sp. CLZ strain was isolated from soil contaminated with chemical wastewater, which can simultaneously produce PQQ, CoQ10, and carotenoids by using cheap methanol as carbon source. We investigated a mutant strain NI91, which increased the PQQ and CoQ10 yield by 72.44% and 59.80%, respectively. Whole-genome sequencing of NI91 and wild-type strain CLZ revealed that both contain a 5.28 Mb chromosome. The comparative genomic analysis and validation study revealed that a significant increase in biomass and PQQ production was associated with the base mutations in the methanol dehydrogenase (MDH) synthesis genes, mxaD and mxaJ. The significant increase in CoQ10 production may be associated with the base mutations in dxs gene, a key gene in the MEP/DOXP pathway. Conclusions A PQQ producing strain that simultaneously produces CoQ10 and carotenoids was selected and after ANI analysis, named as Methylobacterium sp. CLZ. After random mutagenesis of this strain, we obtained NI91 strain, which showed increased production of PQQ and CoQ10. Based on comparative genomic analysis of the whole genome of mutant strain NI91 and wild-type strain CLZ, a total of 270 SNPs and InDels events were detected, which provided a reference for subsequent research. The mutations in mxaD, mxaJ and dxs genes may be related to the high yield of PQQ and CoQ10. These findings will enhance our understanding of the PQQ and CoQ10 over-production mechanism in Methylobacterium sp. NI91 at the genomic level. It will also provide useful clues for strain engineering in order to improve the PQQ and CoQ10 production.


2021 ◽  
Vol 15 (5) ◽  
pp. e0009419
Author(s):  
Vladislav Shevtsov ◽  
Alma Kairzhanova ◽  
Alexandr Shevtsov ◽  
Alexandr Shustov ◽  
Ruslan Kalendar ◽  
...  

Tularemia is a highly dangerous zoonotic infection due to the bacteria Francisella tularensis. Low genetic diversity promoted the use of polymorphic tandem repeats (MLVA) as first-line assay for genetic description. Whole genome sequencing (WGS) is becoming increasingly accessible, opening the perspective of a time when WGS might become the universal genotyping assay. The main goal of this study was to describe F. tularensis strains circulating in Kazakhstan based on WGS data and develop a MLVA assay compatible with in vitro and in silico analysis. In vitro MLVA genotyping and WGS were performed for the vaccine strain and for 38 strains isolated in Kazakhstan from natural water bodies, ticks, rodents, carnivores, and from one migratory bird, an Isabellina wheatear captured in a rodent burrow. The two genotyping approaches were congruent and allowed to attribute all strains to two F. tularensis holarctica lineages, B.4 and B.12. The seven tandem repeats polymorphic in the investigated strain collection could be typed in a single multiplex PCR assay. Identical MLVA genotypes were produced by in vitro and in silico analysis, demonstrating full compatibility between the two approaches. The strains from Kazakhstan were compared to all publicly available WGS data of worldwide origin by whole genome SNP (wgSNP) analysis. Genotypes differing at a single SNP position were collected within a time interval of more than fifty years, from locations separated from each other by more than one thousand kilometers, supporting a role for migratory birds in the worldwide spread of the bacteria.


Sign in / Sign up

Export Citation Format

Share Document