scholarly journals Classification of Hyperspectral Images with CNN in Agricultural Lands

2021 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Eren Can Seyrek ◽  
Murat Uysal

Hyperspectral images (HSI) offer detailed spectral reflectance information about sensed objects through provision of information on hundreds of narrow spectral bands. HSI have a leading role in a broad range of applications, such as in forestry, agriculture, geology, and environmental sciences. The monitoring and management of agricultural lands is of great importance for meeting the nutritional and other needs of a rapidly and continuously increasing world population. In relation to this, classification of HSI is an effective way for creating land use and land cover maps quickly and accurately. In recent years, classification of HSI using convolutional neural networks (CNN), which is a sub-field of deep learning, has become a very popular research topic and several CNN architectures have been developed by researchers. The aim of this study was to investigate the classification performance of CNN model on agricultural HSI scenes. For this purpose, a 3D-2D CNN framework and a well-known support vector machine (SVM) model were compared using the Indian Pines and Salinas Scene datasets that contain crop and mixed vegetation classes. As a result of this study, it was confirmed that use of 3D-2D CNN offers superior performance for classifying agricultural HSI datasets.

Author(s):  
R. Hänsch ◽  
O. Hellwich

The automatic classification of land cover types from hyperspectral images is a challenging problem due to (among others) the large amount of spectral bands and their high spatial and spectral correlation. The extraction of meaningful features, that enables a subsequent classifier to distinguish between different land cover classes, is often limited to a subset of all available data dimensions which is found by band selection techniques or other methods of dimensionality reduction. This work applies Projection-Based Random Forests to hyperspectral images, which not only overcome the need of an explicit feature extraction, but also provide mechanisms to automatically select spectral bands that contain original (i.e. non-redundant) as well as highly meaningful information for the given classification task. The proposed method is applied to four challenging hyperspectral datasets and it is shown that the effective number of spectral bands can be considerably limited without loosing too much of classification performance, e.g. a loss of 1 % accuracy if roughly 13 % of all available bands are used.


Author(s):  
R. Hänsch ◽  
O. Hellwich

The automatic classification of land cover types from hyperspectral images is a challenging problem due to (among others) the large amount of spectral bands and their high spatial and spectral correlation. The extraction of meaningful features, that enables a subsequent classifier to distinguish between different land cover classes, is often limited to a subset of all available data dimensions which is found by band selection techniques or other methods of dimensionality reduction. This work applies Projection-Based Random Forests to hyperspectral images, which not only overcome the need of an explicit feature extraction, but also provide mechanisms to automatically select spectral bands that contain original (i.e. non-redundant) as well as highly meaningful information for the given classification task. The proposed method is applied to four challenging hyperspectral datasets and it is shown that the effective number of spectral bands can be considerably limited without loosing too much of classification performance, e.g. a loss of 1 % accuracy if roughly 13 % of all available bands are used.


2018 ◽  
Vol 62 (5) ◽  
pp. 558-562
Author(s):  
Uchaev D.V. ◽  
◽  
Uchaev Dm.V. ◽  
Malinnikov V.A. ◽  
◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yizhe Wang ◽  
Cunqian Feng ◽  
Yongshun Zhang ◽  
Sisan He

Precession is a common micromotion form of space targets, introducing additional micro-Doppler (m-D) modulation into the radar echo. Effective classification of space targets is of great significance for further micromotion parameter extraction and identification. Feature extraction is a key step during the classification process, largely influencing the final classification performance. This paper presents two methods for classifying different types of space precession targets from the HRRPs. We first establish the precession model of space targets and analyze the scattering characteristics and then compute electromagnetic data of the cone target, cone-cylinder target, and cone-cylinder-flare target. Experimental results demonstrate that the support vector machine (SVM) using histograms of oriented gradient (HOG) features achieves a good result, whereas the deep convolutional neural network (DCNN) obtains a higher classification accuracy. DCNN combines the feature extractor and the classifier itself to automatically mine the high-level signatures of HRRPs through a training process. Besides, the efficiency of the two classification processes are compared using the same dataset.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7417
Author(s):  
Alex J. Hope ◽  
Utkarsh Vashisth ◽  
Matthew J. Parker ◽  
Andreas B. Ralston ◽  
Joshua M. Roper ◽  
...  

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


2019 ◽  
Vol 38 (1) ◽  
pp. 155-169
Author(s):  
Chihli Hung ◽  
You-Xin Cao

Purpose This paper aims to propose a novel approach which integrates collocations and domain concepts for Chinese cosmetic word of mouth (WOM) sentiment classification. Most sentiment analysis works by collecting sentiment scores from each unigram or bigram. However, not every unigram or bigram in a WOM document contains sentiments. Chinese collocations consist of the main sentiments of WOM. This paper reduces the complexity of the document dimensionality and makes an improvement for sentiment classification. Design/methodology/approach This paper builds two contextual lexicons for feature words and sentiment words, respectively. Based on these contextual lexicons, this paper uses the techniques of associated rules and mutual information to build possible Chinese collocation sets. This paper applies preference vector modelling as the vector representation approach to catch the relationship between Chinese collocations and their associated concepts. Findings This paper compares the proposed preference vector models with benchmarks, using three classification techniques (i.e. support vector machine, J48 decision tree and multilayer perceptron). According to the experimental results, the proposed models outperform all benchmarks evaluated by the criterion of accuracy. Originality/value This paper focuses on Chinese collocations and proposes a novel research approach for sentiment classification. The Chinese collocations used in this paper are adaptable to the content and domains. Finally, this paper integrates collocations with the preference vector modelling approach, which not only achieves a better sentiment classification performance for Chinese WOM documents but also avoids the curse of dimensionality.


Sign in / Sign up

Export Citation Format

Share Document