scholarly journals Association between Airborne Fine Particulate Matter and Residents’ Cardiovascular Diseases, Ischemic Heart Disease and Cerebral Vascular Disease Mortality in Areas with Lighter Air Pollution in China

Author(s):  
Junfang Cai ◽  
Shuyuan Yu ◽  
Yingxin Pei ◽  
Chaoqiong Peng ◽  
Yuxue Liao ◽  
...  

Background: China began to carry out fine particulate matter (PM2.5) monitoring in 2013 and the amount of related research is low, especially in areas with lighter air pollution. This study aims to explore the association between PM2.5 and cardiovascular disease (CVD), ischemic heart disease (IHD) and cerebral vascular disease (EVD) mortality in areas with lighter air pollution. Methods: Data on resident mortality, air pollution and meteorology in Shenzhen during 2013–2015 were collected and analyzed using semi-parametric generalized additive models (GAM) with Poisson distribution of time series analysis. Results: Six pollutants were measured at seven air quality monitoring sites, including PM2.5, PM10, SO2, NO2, CO and O3. The PM2.5 daily average concentration was 35.0 ± 21.9 μg/m3; the daily average concentration range was from 7.1 μg/m3 to 137.1 μg/m3. PM2.5 concentration had significant effects on CVD, IHD and EVD mortality. While PM2.5 concentration of lag5 and lag02 rose by 10 μg/m3, the excess risk (ER) of CVD mortality were 1.50% (95% CI: 0.51–2.50%) and 2.09% (95% CI: 0.79–3.41%), respectively. While PM2.5 concentration of lag2 and lag02 rose by 10 μg/m3, the ER of IHD mortality were 2.87% (95% CI: 0.71–5.07%) and 3.86% (95% CI: 1.17–6.63%), respectively. While PM2.5 concentration of lag4 and lag04 rose by 10 μg/m3, the ER of EVD mortality were 2.09% (95% CI: 2.28–3.92%) and 3.08% (95% CI: 0.68–5.53%), respectively. Conclusions: PM2.5 increased CVD mortality. The government needs to strengthen the governance of air pollution in areas with a slight pollution.

2019 ◽  
Vol 8 (3) ◽  
pp. 7922-7927

In Taiwan country Annan, Chiayi, Giran, and Puzi cities are facing a serious fine particulate matter (PM2.5) issue. To date the impressive advance has been made toward understanding the PM2.5 issue, counting special temporal characterization, driving variables and well-being impacted. However, notable research as has been done on the interaction of the content between the selected cities of Taiwan country for particulate matter (PM2.5) concentration. In this paper, we purposed a visualization technique based on this principle of the visualization, cross-correlation method and also the time-series concentration with particulate matter (PM2.5) for different cities in Taiwan. The visualization also shows that the correlation between the different meteorological factors as well as the different air pollution pollutants for particular cities in Taiwan. This visualization approach helps to determine the concentration of the air pollution levels in different cities and also determine the Pearson correlation, r values of selected cities are Annan, Puzi, Giran, and Wugu.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1324
Author(s):  
Ju Wang ◽  
Ran Li ◽  
Kexin Xue ◽  
Chunsheng Fang

Due to rapid urbanization and socio-economic development, fine particulate matter (PM2.5) pollution has drawn very wide concern, especially in the Beijing–Tianjin–Hebei region, as well as in its surrounding areas. Different socio-economic developments shape the unique characteristics of each city, which may contribute to the spatial heterogeneity of pollution levels. Based on ground fine particulate matter (PM2.5) monitoring data and socioeconomic panel data from 2015 to 2019, the Beijing–Tianjin–Hebei region, and its surrounding provinces, were selected as a case study area to explore the spatio-temporal heterogeneity of PM2.5 pollution, and the driving effect of socioeconomic factors on local air pollution. The spatio-temporal heterogeneity analysis showed that PM2.5 concentration in the study area expressed a downward trend from 2015 to 2019. Specifically, the concentration in Beijing–Tianjin–Hebei and Henan Province had decreased, but in Shanxi Province and Shandong Province, the concentration showed an inverted U-shaped and U-shaped variation trend, respectively. From the perspective of spatial distribution, PM2.5 concentrations in the study area had an obvious spatial positive correlation, with agglomeration characteristics of “high–high” and “low–low”. The high-value area was mainly distributed in the junction area of Henan, Shandong, and Hebei Provinces, which had been gradually moving to the southwest. The low values were mainly concentrated in the northern parts of Shanxi and Hebei Provinces, and the eastern part of Shandong Province. The results of the spatial lag model showed that Total Population (POP), Proportion of Urban Population (UP), Output of Second Industry (SI), and Roads Density (RD) had positive driving effects on PM2.5 concentration, which were opposite of the Gross Domestic Product (GDP). In addition, the spatial spillover effect of the PM2.5 concentrations in surrounding areas has a positive driving effect on local pollution levels. Although the PM2.5 levels in the study area have been decreasing, air pollution is still a serious problem. In the future, studies on the spatial and temporal heterogeneity of PM2.5 caused by unbalanced social development will help to better understand the interaction between urban development and environmental stress. These findings can contribute to the development of effective policies to mitigate and reduce PM2.5 pollutions from a socio-economic perspective.


Author(s):  
Tuo Shi ◽  
Yuanman Hu ◽  
Miao Liu ◽  
Chunlin Li ◽  
Chuyi Zhang ◽  
...  

With China’s rapid development, urban air pollution problems occur frequently. As one of the principal components of haze, fine particulate matter (PM2.5) has potential negative health effects, causing widespread concern. However, the causal interactions and dynamic relationships between socioeconomic factors and ambient air pollution are still unclear, especially in specific regions. As an important industrial base in Northeast China, Liaoning Province is a representative mode of social and economic development. Panel data including PM2.5 concentration and three socio-economic indicators of Liaoning Province from 2000 to 2015 were built. The data were first-difference stationary and the variables were cointegrated. The Granger causality test was used as the main method to test the causality. In the results, in terms of the causal interactions, economic activities, industrialization and urbanization processes all showed positive long-term impacts on changes of PM2.5 concentration. Economic growth and industrialization also significantly affected the variations in PM2.5 concentration in the short term. In terms of the contributions, industrialization contributed the most to the variations of PM2.5 concentration in the sixteen years, followed by economic growth. Though Liaoning Province, an industry-oriented region, has shown characteristics of economic and industrial transformation, policy makers still need to explore more targeted policies to address the regional air pollution issue.


Health Scope ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sima Baridkazemi ◽  
Khalilollah Moeininan ◽  
Ali Taghipour ◽  
Ayat Rahmani ◽  
Hamidreza Nassehinia

Background: Air pollution is a major social problem, particularly in developing countries, where the rapid expansion of industries, cities, and traffic is the main cause of increased air pollution. Objectives: This ecological study (correlation) has been conducted with the aim of analyzing the correlation between ambient fine particulate matter (PM2.5) amount and the rate of stroke mortality in Mashhad during the years 2014 and 2015. Methods: Data were collected from hospitals, the Monitoring Center of Environmental Pollutants, and the Bureau of Meteorology in Khorasan Razavi Province and were analyzed to evaluate the correlation. Results: The results show that the correlation coefficient between PM2.5 and the rate of stroke mortality in different seasons in 2014 and 2015 are 0.997 and 0.902, respectively. The correlation was stronger in 2014 and is significant at a confidence level of 0.01. Conclusions: According to the results, the annual average concentration of PM2.5 decreased from 29.261 (μg/m3) in 2014 to 25.283 (μg/m3) in 2015, and also, the annual rate of stroke mortality decreased by 4.4% in 2015.


2016 ◽  
Vol 183 (9) ◽  
pp. 861-868 ◽  
Author(s):  
Sadie Costello ◽  
Andreas M. Neophytou ◽  
Daniel M. Brown ◽  
Elizabeth M. Noth ◽  
S. Katharine Hammond ◽  
...  

Author(s):  
Showmitra Kumar Sarkar ◽  
Md. Mehedi Hasan Khan

Abstract Objective: The purpose of the research was to investigate and identify the impact of COVID-19 lockdown on fine particulate matter (PM2.5) pollution in Dhaka, Bangladesh by using ground-based observation data. Methods: The research assessed air quality during the COVID-19 pandemic for PM2.5 from 1 January 2017 to 1 August 2020. The research considered pollution in pre-COVID-19 (1 January-23 March), during COVID-19 (24 March-30 May), and post-COVID-19 (31 May-1 August) lockdown periods with current (2020) and historical (2017-2019) data. Results: PM2.5 pollution followed a similar yearly trend in year 2017-2020. The average concentration for PM2.5 was found 87.47 μg/m3 in the study period. Significant PM2.5 declines were observed in the current COVID-19 lockdown period compared to historical data: 11.31% reduction with an absolute decrease of 7.15 μg/m3. Conclusion: The findings of the research provide an overview of how the COVID-19 pandemic affects air pollution. The results will provide initial evidence regarding human behavioral changes and emission controls. This research will also suggest avenues for further study to link the findings with health outcomes.


Author(s):  
Youngrin Kwag ◽  
Min-ho Kim ◽  
Shinhee Ye ◽  
Jongmin Oh ◽  
Gyeyoon Yim ◽  
...  

Background: Preterm birth contributes to the morbidity and mortality of newborns and infants. Recent studies have shown that maternal exposure to particulate matter and extreme temperatures results in immune dysfunction, which can induce preterm birth. This study aimed to evaluate the association between fine particulate matter (PM2.5) exposure, temperature, and preterm birth in Seoul, Republic of Korea. Methods: We used 2010–2016 birth data from Seoul, obtained from the Korea National Statistical Office Microdata. PM2.5 concentration data from Seoul were generated through the Community Multiscale Air Quality (CMAQ) model. Seoul temperature data were collected from the Korea Meteorological Administration (KMA). The exposure period of PM2.5 and temperature were divided into the first (TR1), second (TR2), and third (TR3) trimesters of pregnancy. The mean PM2.5 concentration was used in units of ×10 µg/m3 and the mean temperature was divided into four categories based on quartiles. Logistic regression analyses were performed to evaluate the association between PM2.5 exposure and preterm birth, as well as the combined effects of PM2.5 exposure and temperature on preterm birth. Result: In a model that includes three trimesters of PM2.5 and temperature data as exposures, which assumes an interaction between PM2.5 and temperature in each trimester, the risk of preterm birth was positively associated with TR1 PM2.5 exposure among pregnant women exposed to relatively low mean temperatures (<3.4 °C) during TR1 (OR 1.134, 95% CI 1.061–1.213, p < 0.001). Conclusions: When we assumed the interaction between PM2.5 exposure and temperature exposure, PM2.5 exposure during TR1 increased the risk of preterm birth among pregnant women exposed to low temperatures during TR1. Pregnant women should be aware of the risk associated with combined exposure to particulate matter and low temperatures during TR1 to prevent preterm birth.


Sign in / Sign up

Export Citation Format

Share Document