scholarly journals How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China

Author(s):  
Tuo Shi ◽  
Yuanman Hu ◽  
Miao Liu ◽  
Chunlin Li ◽  
Chuyi Zhang ◽  
...  

With China’s rapid development, urban air pollution problems occur frequently. As one of the principal components of haze, fine particulate matter (PM2.5) has potential negative health effects, causing widespread concern. However, the causal interactions and dynamic relationships between socioeconomic factors and ambient air pollution are still unclear, especially in specific regions. As an important industrial base in Northeast China, Liaoning Province is a representative mode of social and economic development. Panel data including PM2.5 concentration and three socio-economic indicators of Liaoning Province from 2000 to 2015 were built. The data were first-difference stationary and the variables were cointegrated. The Granger causality test was used as the main method to test the causality. In the results, in terms of the causal interactions, economic activities, industrialization and urbanization processes all showed positive long-term impacts on changes of PM2.5 concentration. Economic growth and industrialization also significantly affected the variations in PM2.5 concentration in the short term. In terms of the contributions, industrialization contributed the most to the variations of PM2.5 concentration in the sixteen years, followed by economic growth. Though Liaoning Province, an industry-oriented region, has shown characteristics of economic and industrial transformation, policy makers still need to explore more targeted policies to address the regional air pollution issue.

2017 ◽  
Vol 50 (6) ◽  
pp. 1700559 ◽  
Author(s):  
Coralynn Sack ◽  
Sverre Vedal ◽  
Lianne Sheppard ◽  
Ganesh Raghu ◽  
R. Graham Barr ◽  
...  

We studied whether ambient air pollution is associated with interstitial lung abnormalities (ILAs) and high attenuation areas (HAAs), which are qualitative and quantitative measurements of subclinical interstitial lung disease (ILD) on computed tomography (CT).We performed analyses of community-based dwellers enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA) study. We used cohort-specific spatio-temporal models to estimate ambient pollution (fine particulate matter (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2) and ozone (O3)) at each home. A total of 5495 participants underwent serial assessment of HAAs by cardiac CT; 2671 participants were assessed for ILAs using full lung CT at the 10-year follow-up. We used multivariable logistic regression and linear mixed models adjusted for age, sex, ethnicity, education, tobacco use, scanner technology and study site.The odds of ILAs increased 1.77-fold per 40 ppb increment in NOx (95% CI 1.06 to 2.95, p = 0.03). There was an overall trend towards an association between higher exposure to NOx and greater progression of HAAs (0.45% annual increase in HAAs per 40 ppb increment in NOx; 95% CI −0.02 to 0.92, p = 0.06). Associations of ambient fine particulate matter (PM2.5), NOx and NO2 concentrations with progression of HAAs varied by race/ethnicity (p = 0.002, 0.007, 0.04, respectively, for interaction) and were strongest among non-Hispanic white people.We conclude that ambient air pollution exposures were associated with subclinical ILD.


2009 ◽  
Vol 109 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Catherine J. Karr ◽  
Carole B. Rudra ◽  
Kristin A. Miller ◽  
Timothy R. Gould ◽  
Timothy Larson ◽  
...  

2021 ◽  
Vol 131 (1) ◽  
pp. 67-70
Author(s):  
Mieczysław Szyszkowicz ◽  
Nicholas De Angelis

Abstract Introduction. This study investigates associations between air pollution and emergency department (ED) visits for urticaria in Toronto, Canada. Aim. To verify the hypothesis that urticaria are related to air pollution. Material and methods. The National Ambulatory Care Reporting System database is used to draw the daily ED visits. The L50 section of the International Classification of Disease 10th Revision is applied to extract ED visits whose primary causes was urticaria-related skin condition. Statistical models (condition Poisson regression) using daily counts of ED visits are constructed for urticaria (health response) with ambient air pollution concentrations and weather factors as independent variable. Two air quality health indexes and six ambient air pollutants: fine particulate matter PM2.5, O3, CO, NO2, SO2, and maximum 8-hour average ozone are considered as an exposure. Results. A total of 176 statistically significant (P-Value <0.05) positive correlations were identified over the 15 day lag period (0-14 days). For daily average of ambient ozone, 74 positive correlations were observed with the following relative risks (RR) for a one interquartile range (IQR=12.8 ppb) increase: RR=1.361 (95% confidence interval: 1.302, 1.404), 1.359 (1.299, 1.401), 1.351 (1.281, 1.404) in the warm season (April-September), lag 0, and RR=1.019 (1.013, 1.025), 1.023 (1.016, 1.030), 1.014 (1.007, 1.021), lag 1, in the cold period (October-March), for all, females, and males, respectively. 10, 45 and 45 positive correlations were also obtained for sulfur dioxide, fine particulate matter, and daily maximum 8-hour average ozone concentrations, respectively. Conclusions. The results indicate that urban ambient air pollution could influence the numbers of ED visits for urticaria. Ambient ozone was determined as the main environmental factor contributing to these associations.


2019 ◽  
Vol 8 (3) ◽  
pp. 7922-7927

In Taiwan country Annan, Chiayi, Giran, and Puzi cities are facing a serious fine particulate matter (PM2.5) issue. To date the impressive advance has been made toward understanding the PM2.5 issue, counting special temporal characterization, driving variables and well-being impacted. However, notable research as has been done on the interaction of the content between the selected cities of Taiwan country for particulate matter (PM2.5) concentration. In this paper, we purposed a visualization technique based on this principle of the visualization, cross-correlation method and also the time-series concentration with particulate matter (PM2.5) for different cities in Taiwan. The visualization also shows that the correlation between the different meteorological factors as well as the different air pollution pollutants for particular cities in Taiwan. This visualization approach helps to determine the concentration of the air pollution levels in different cities and also determine the Pearson correlation, r values of selected cities are Annan, Puzi, Giran, and Wugu.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1324
Author(s):  
Ju Wang ◽  
Ran Li ◽  
Kexin Xue ◽  
Chunsheng Fang

Due to rapid urbanization and socio-economic development, fine particulate matter (PM2.5) pollution has drawn very wide concern, especially in the Beijing–Tianjin–Hebei region, as well as in its surrounding areas. Different socio-economic developments shape the unique characteristics of each city, which may contribute to the spatial heterogeneity of pollution levels. Based on ground fine particulate matter (PM2.5) monitoring data and socioeconomic panel data from 2015 to 2019, the Beijing–Tianjin–Hebei region, and its surrounding provinces, were selected as a case study area to explore the spatio-temporal heterogeneity of PM2.5 pollution, and the driving effect of socioeconomic factors on local air pollution. The spatio-temporal heterogeneity analysis showed that PM2.5 concentration in the study area expressed a downward trend from 2015 to 2019. Specifically, the concentration in Beijing–Tianjin–Hebei and Henan Province had decreased, but in Shanxi Province and Shandong Province, the concentration showed an inverted U-shaped and U-shaped variation trend, respectively. From the perspective of spatial distribution, PM2.5 concentrations in the study area had an obvious spatial positive correlation, with agglomeration characteristics of “high–high” and “low–low”. The high-value area was mainly distributed in the junction area of Henan, Shandong, and Hebei Provinces, which had been gradually moving to the southwest. The low values were mainly concentrated in the northern parts of Shanxi and Hebei Provinces, and the eastern part of Shandong Province. The results of the spatial lag model showed that Total Population (POP), Proportion of Urban Population (UP), Output of Second Industry (SI), and Roads Density (RD) had positive driving effects on PM2.5 concentration, which were opposite of the Gross Domestic Product (GDP). In addition, the spatial spillover effect of the PM2.5 concentrations in surrounding areas has a positive driving effect on local pollution levels. Although the PM2.5 levels in the study area have been decreasing, air pollution is still a serious problem. In the future, studies on the spatial and temporal heterogeneity of PM2.5 caused by unbalanced social development will help to better understand the interaction between urban development and environmental stress. These findings can contribute to the development of effective policies to mitigate and reduce PM2.5 pollutions from a socio-economic perspective.


Hypertension ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 813-822
Author(s):  
Sadeer G. Al-Kindi ◽  
Robert D. Brook ◽  
Udayan Bhatt ◽  
Michael Brauer ◽  
William C. Cushman ◽  
...  

Fine particulate matter <2.5 µm (PM 2.5 ) air pollution is implicated in global mortality, especially from cardiovascular causes. A large body of evidence suggests a link between PM 2.5 and elevation in blood pressure (BP), with the latter implicated as a potential mediator of cardiovascular events. We sought to determine if the outcomes of intensive BP lowering (systolic BP <120 mm Hg) on cardiovascular events are modified by PM 2.5 exposure in the SPRINT (Systolic BP Intervention Trial). We linked annual PM 2.5 exposure estimates derived from an integrated model to subjects participating in SPRINT. We evaluated the effect of intensive BP lowering by PM 2.5 exposure on the primary outcome in SPRINT using cox-proportional hazard models. A total of 9286 participants were linked to PM 2.5 levels (mean age 68±9 years). Intensive BP-lowering decreased risk of the primary outcome more among patients exposed to higher PM 2.5 ( P interaction =0.047). The estimate for lowering of primary outcome was numerically lower in the highest than in the lower quintiles. The benefits of intensive BP-lowering were larger among patients chronically exposed to PM 2.5 levels above US National Ambient Air Quality Standards of 12 µg/m 3 (hazard ratio, 0.47 [95% CI, 0.29–0.74]) compared with those living in cleaner locations (hazard ratio, 0.81 [95% CI, 0.68–0.97]), P interaction =0.037. This exploratory nonprespecified post hoc analysis of SPRINT suggests that the benefits of intensive BP lowering on the primary outcome was greater in patients exposed to higher PM 2.5 , suggesting that the magnitude of benefit may depend upon the magnitude of antecedent PM 2.5 exposure.


Author(s):  
Junfang Cai ◽  
Shuyuan Yu ◽  
Yingxin Pei ◽  
Chaoqiong Peng ◽  
Yuxue Liao ◽  
...  

Background: China began to carry out fine particulate matter (PM2.5) monitoring in 2013 and the amount of related research is low, especially in areas with lighter air pollution. This study aims to explore the association between PM2.5 and cardiovascular disease (CVD), ischemic heart disease (IHD) and cerebral vascular disease (EVD) mortality in areas with lighter air pollution. Methods: Data on resident mortality, air pollution and meteorology in Shenzhen during 2013–2015 were collected and analyzed using semi-parametric generalized additive models (GAM) with Poisson distribution of time series analysis. Results: Six pollutants were measured at seven air quality monitoring sites, including PM2.5, PM10, SO2, NO2, CO and O3. The PM2.5 daily average concentration was 35.0 ± 21.9 μg/m3; the daily average concentration range was from 7.1 μg/m3 to 137.1 μg/m3. PM2.5 concentration had significant effects on CVD, IHD and EVD mortality. While PM2.5 concentration of lag5 and lag02 rose by 10 μg/m3, the excess risk (ER) of CVD mortality were 1.50% (95% CI: 0.51–2.50%) and 2.09% (95% CI: 0.79–3.41%), respectively. While PM2.5 concentration of lag2 and lag02 rose by 10 μg/m3, the ER of IHD mortality were 2.87% (95% CI: 0.71–5.07%) and 3.86% (95% CI: 1.17–6.63%), respectively. While PM2.5 concentration of lag4 and lag04 rose by 10 μg/m3, the ER of EVD mortality were 2.09% (95% CI: 2.28–3.92%) and 3.08% (95% CI: 0.68–5.53%), respectively. Conclusions: PM2.5 increased CVD mortality. The government needs to strengthen the governance of air pollution in areas with a slight pollution.


2019 ◽  
Vol 2 (5) ◽  
pp. 130-137
Author(s):  
Huy Huu Duong ◽  
Chi Doan Thien Nguyen ◽  
Phu Ly Sy Nguyen ◽  
Hien Thi To

Since 2013, the Ministry of Natural Resources and Environment published the revision of the “National Technical Regulation on Ambient Air Quality” (QCVN 05:2013/BTNMT), in which the fine particulate matter (PM2.5) was added to the QCVN. However, the status and the temporal variation of PM2.5 in Ho Chi Minh City (HCMC) have not been reported so far, especially based on the continuous and high time resolution measurements. The aim of this study was to analyze the status and the temporal variation of PM2.5 collected at the center of HCMC. Based on the composited PM2.5 data from the air monitoring station located at the University of Science, the average PM2.5 concentration was 28.0 ± 18.1 µg/m³ during 2013– 2017. The annual PM2.5 concentration in HCMC exceeded the acceptable limits of QCVN and WHO, highlighting a high human health risk. The PM2.5 concentrations showed the pronounced diurnal variation with the highest observed after the morning rush hour and the lowest during the midnight. In addition, a remarkable seasonal variation was observed with the highest and lowest PM2.5 occurring in dry and rainy seasons, respectively. This result highlighted the vital role of the rainfall events in reducing the PM2.5 level. Finally, from the analysis of the backward trajectories ending at the air monitoring station, we found that the air mass from the North and Northeast originating from China then passing through the areas (i.e. Binh Duong and Dong Nai provinces) with heavy industrial activities possessed a high PM2.5 level.


BMJ Open ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. e022450 ◽  
Author(s):  
Benjamin Bowe ◽  
Yan Xie ◽  
Tingting Li ◽  
Yan Yan ◽  
Hong Xian ◽  
...  

ObjectiveTo quantitate the 2016 global and national burden of chronic kidney disease (CKD) attributable to ambient fine particulate matter air pollution ≤ 2.5 μm in aerodynamic diameter (PM2.5).DesignWe used the Global Burden of Disease (GBD) study data and methodologies to estimate the 2016 burden of CKD attributable to PM2.5in 194 countries and territories. Population-weighted PM2.5levels and incident rates of CKD for each country were curated from the GBD study publicly available data sources.SettingGBD global and national data on PM2.5and CKD.Participants194 countries and territories.Main outcome measuresWe estimated the attributable burden of disease (ABD), years living with disability (YLD), years of life lost (YLL) and disability-adjusted life-years (DALYs).ResultsThe 2016 global burden of incident CKD attributable to PM2.5was 6 950 514 (95% uncertainty interval: 5 061 533–8 914 745). Global YLD, YLL and DALYs of CKD attributable to PM2.5were 2 849 311 (1 875 219–3 983 941), 8 587 735 (6 355 784–10 772 239) and 11 445 397 (8 380 246–14 554 091), respectively. Age-standardised ABD, YLL, YLD and DALY rates varied substantially among geographies. Populations in Mesoamerica, Northern Africa, several countries in the Eastern Mediterranean region, Afghanistan, Pakistan, India and several countries in Southeast Asia were among those with highest age-standardised DALY rates. For example, age-standardised DALYs per 100 000 were 543.35 (391.16–707.96) in El Salvador, 455.29 (332.51–577.97) in Mexico, 408.41 (283.82–551.84) in Guatemala, 238.25 (173.90–303.98) in India and 178.26 (125.31–238.47) in Sri Lanka, compared with 5.52 (0.82–11.48) in Sweden, 6.46 (0.00–14.49) in Australia and 12.13 (4.95–21.82) in Canada. Frontier analyses showed that Mesoamerican countries had significantly higher CKD DALY rates relative to other countries with comparable sociodemographic development.ConclusionsOur results demonstrate that the global toll of CKD attributable to ambient air pollution is significant and identify several endemic geographies where air pollution may be a significant driver of CKD burden. Air pollution may need to be considered in the discussion of the global epidemiology of CKD.


2021 ◽  
Vol 102 (6) ◽  
pp. 862-876
Author(s):  
L M Fatkhutdinova ◽  
E A Tafeeva ◽  
G A Timerbulatova ◽  
R R Zalyalov

The review presents up-to-date information on the health effects of ambient fine particulate matter, obtained in large cohort epidemiological studies, as well as in meta-analysis of pooled data. In addition, it summarizes the current data on the potential pathological mechanisms and existing monitoring systems. The literature search used the Scopus, PubMed, Russian Science Citation Index databases for 19902020. The results of epidemiological studies carried out in different countries indicate that fine particles in ambient air pose a serious threat to health. Scientific publications assessing the health impact of particulate matter show a wide range of adverse effects from the increasing incidence of upper and lower respiratory tract diseases, including exacerbations of bronchial asthma, pneumonia, chronic obstructive pulmonary disease, to a high incidence of myocardial infarction, strokes, diabetes mellitus type 2, as well as an increase in overall mortality from natural causes, mainly mortality from respiratory diseases, cardiovascular and cerebrovascular diseases, lung cancer. The effects of short-term exposures are described in more detail, while the effects of long-term exposure to fine particles are not well understood. Potential mechanisms of the harmful effects of fine particulate matter include oxidative stress, inflammatory reactions, disorders of autonomic regulation and heart rhythm, fine particles translocation through the alveolar barrier into the vascular bed with endothelial damage and thrombus formation, and genotoxicity. Ambient fine particulate matter is a manageable risk factor, and reductions in air pollution will have a significant impact on public health outcomes.


Sign in / Sign up

Export Citation Format

Share Document