scholarly journals Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China

Author(s):  
Bin Liang ◽  
Guilin Han ◽  
Man Liu ◽  
Kunhua Yang ◽  
Xiaoqiang Li ◽  
...  

In this study, the concentration of eight dissolved heavy metals (Ti, Cr, Mn, Fe, Ni, Mo, Sb, and Ba) in 42 water samples from the Jiulongjiang River, southeast China, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Multivariate statistical methods, including correlation analysis (CA) and factor and principal component analysis (FA/PCA), were analyzed to identify the sources of the elements. Water quality index (WQI) and health risk assessment, including hazard quotient (HQ) and hazard index (HI), were used to evaluate water quality and the impacts on human health. Our results were compared with the drinking water guidelines reported by China, the World Health Organization (WHO), and the United States Environmental Protection Agency (US EPA), revealing that Ti, Mn, and Sb were not within approved limits at some sites and might be the main pollutants in the drainage basin. Based on the spatial distributions, Ti, Mn, Fe, Ni, and Mo showed good similarity, indicating that they might come from similar sources along the river. The CA results also showed that Ti, Mn, Fe, Ni, and Mo had a high correlation coefficient. The FA/PCA results identified three principal components (PC) that accounted for 79.46% of the total variance. PC 1 suggested that a mixed lithogenic and urban land source contributed to Ti, Mn, Fe, Ni, and Mo; PC 2 showed that Cr, Ni, and Mo were influenced by the discharge of industrial effluents; Sb had a strong loading on PC 3, which was controlled by mining activities. The results of the WQI indicated that the water in the Jiulongjiang River was basically categorized as excellent water, but the water quality levels in site W5 and N4 were poorer due to urban land use. Hazard quotient and HI values showed that Sb was a potential threat to human health, indicating that preventive actions should be considered in regard to mining activities in the upper reaches of Beixi stream.

Author(s):  
Ching-Ping Liang ◽  
Chi-Chien Sun ◽  
Heejun Suk ◽  
Sheng-Wei Wang ◽  
Jui-Sheng Chen

Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. However, in some places the groundwater arsenic (As) concentrations far exceed the World Health Organization’s standards for drinking water quality. Measurements of the As concentrations in groundwater show considerable spatial variability, which means that the associated risk to human health would also vary from region to region. This study aims to adapt a back-propagation neural network (BPNN) method to carry out more reliable spatial mapping of the As concentrations in the groundwater for comparison with the geostatistical ordinary kriging (OK) method results. Cross validation is performed to evaluate the prediction performance by dividing the As monitoring data into three sets. The cross-validation results show that the average determination coefficients (R2) for the As concentrations obtained with BPNN and OK are 0.55 and 0.49, whereas the average root mean square errors (RMSE) are 0.49 and 0.54, respectively. Given the better prediction performance of the BPNN, it is recommended as a more reliable tool for the spatial mapping of the groundwater As concentration. Subsequently, the As concentrations estimated obtained using the BPNN are applied to develop a spatial map illustrating the risk to human health associated with the ingestion of As-containing groundwater based on the noncarcinogenic hazard quotient (HQ) and carcinogenic target risk (TR) standards established by the U.S. Environmental Protection Agency. Such maps can be used to demarcate the areas where residents are at higher risk due to the ingestion of As-containing groundwater, and prioritize the areas where more intensive monitoring of groundwater quality is required. The spatial mapping of As concentrations from the BPNN was also used to demarcate the regions where the groundwater is suitable for farmland and fishponds based on the water quality standards for As for irrigation and aquaculture.


2021 ◽  
Vol 13 (12) ◽  
pp. 6832
Author(s):  
Md. Foysal Hasan ◽  
Md. Nur-E-Alam ◽  
Mohammed Abdus Salam ◽  
Hafizur Rahman ◽  
Shujit Chandra Paul ◽  
...  

Despite significant contributions to the national economy of Bangladesh, various urban developments, massive industrial and growing shipping activities are making the water of many urban rivers, including Karnaphuli River, extremely polluted. To find out the pollution sources and their possible health effects, 45 water samples were collected from 15 sampling stations. Investigation of six physicochemical parameters (pH, temperature, total dissolved solids, conductivity, salinity, and turbidity) through in-situ measurements and eight heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) status using atomic absorption spectrophotometer (AAS) was carried out in this research. Both the physicochemical parameters and heavy metals exceeded the World Health Organization (WHO)’s permeable threshold limit. The calculated hazard quotient (HQ) and hazard index (HI) ingestion values indicate non-carcinogenic risk both for adults and children, but dermal exposure was within the safety limit. Carcinogenic risk analysis revealed that Cd could cause a risk of cancer in those using the river water for a long period. Spatial analysis and metal pollution index (MPI) results exhibit that downstream of the river water is more polluted than upstream of the river. Overall, the findings of this study imply that polluted water is a threat to human health and the results will also help to undertake proper management strategies and incorporate monitoring programs that study river water for the implementation of safety measures to protect human health.


Author(s):  
Chima Fausta Nnodum ◽  
Kafeelah Abosede Yusuf ◽  
Comfort Adetutu Adeniji

Abstract: Introduction : Heavy metals are known to cause deleterious effects on human health through food chain. Aims: The study is aimed at assessing heavy metal concentrations in the tissues of four highly consumed fish species and to evaluate the potential health risks associated with their consumption. Materials and Methods: The concentrations of Cu, Cd and Pb were analyzed in the tissues of Titus (Scomber Japonicus), Croaker (Pseudolithus Elongatus), Scumbia (Ilisha Africana) and Shrimps (Pipeus Notialis) by atomic absorption spectrophotometry (AAS) after digestion of the samples. Results: The results showed that Cd was not detected in the tissues of all fish species. There were variations among Cu and Pb concentrations in the tissues of the fish species. Cu had the highest concentrations (1.00 µg/g) in the tissues of croaker and shrimps respectively while Pb had the lowest concentrations (0.25 µg/g) in the tissues of Scumbia . The levels of all metals in the present study were lower than the limits permitted by Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO), European Community Regulation (EU) and European Commission (EC). Assessment of noncarcinogenic health hazard using Target hazard quotient (THQ) and hazard index (HI) indicated no concern from consumption of these fish species. The estimated daily intake (EDI) of the studied metals through fish consumption was below the permissible tolerable daily intake. Conclusion: It can be concluded that there is no potential human health risk from consumption of the selected fish species. Keywords: Heavy metals, Hazard index, Target hazard quotient.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Author(s):  
Grażyna Kowalska

The presented study was aimed at the determination of the level of contamination with heavy metals (Cd, Pb, As, and Hg) in 240 samples of plant materials, i.e., herbal raw materials, spices, tea, and coffee. Moreover, a probabilistic risk assessment (noncarcinogenic and carcinogenic risks) was estimated by models including target hazard quotient (THQ) and cancer risk (CR). The samples were subjected to microwave mineralisation with the use of HNO3 (65%), while the determination of the content of the elements was performed with the use of inductively coupled plasma mass spectrometer (ICP–MS) and a mercury analyser. The element which was characterised by the highest level of accumulation in the analysed samples was lead (from 0.010 to 5.680 mg/kg). Among the heavy metals under analysis, the lowest concentration was noted in the case of mercury (from 0.005 to 0.030 mg/kg). A notably higher level of contamination with heavy metals was noted in the analysed samples of herbs and spices (0.005–5.680 mg/kg), compared to samples of tea and coffee (0.005–0.791 mg/kg). According to the guidelines of the World Health Organisation (WHO) concerning the limits of contamination of samples of herbal raw materials with heavy metals, lead levels exceeding the limits were only noted in 24 samples of herbs (18%). In all of the analysed samples of spices, tea, and coffee, no instances of exceeded limits were noted for any of the analysed heavy metals. The values of TTHQmax (in relation to the consumption of the analysed products) were as follows: up to 4.23 × 10−2 for spices, up to 2.51 × 10−1 for herbs, up to 4.03 × 10−2 for China tea, and up to 1.25 × 10−1 for roasted coffee beans. As the value of THQ ≤1, there is no probability of the appearance of undesirable effects related to the consumption of the analysed group of raw materials and products of plant origin. The CR value for As (max. value) was 1.29 × 10−5, which is lower than the maximum acceptable level of 1 × 10−4 suggested by United States Environmental Protection Agency (USEPA).


Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


2020 ◽  
Vol 10 (14) ◽  
pp. 5006 ◽  
Author(s):  
Marc J. Addison ◽  
Michael O. Rivett ◽  
Peaches Phiri ◽  
Prince Mleta ◽  
Emma Mblame ◽  
...  

Consumption of groundwater containing fluoride exceeding World Health Organization (WHO) 1.5 mg/L standard leaves people vulnerable to fluorosis: a vulnerability not well characterised in Malawi. To evaluate geogenic fluoride source and concentration, groundwater fluoride and geology was documented in central Malawi where groundwater supplies are mainly sourced from the weathered basement aquifer. Lithological composition was shown as the main control on fluoride occurrence. Augen gneiss of granitic composition posed the greatest geological fluoride risk. The weathered basement aquifer profile was the main factor controlling fluoride distributions. These results and fluoride-lithology statistical analysis allowed the development of a graded map of geological fluoride risk. A direct link to human health risk (dental fluorosis) from geological fluoride was quantified to support science-led policy change for fluoride in rural drinking water in Malawi. Hazard quotient (HQ) values were calculated and assigned to specific water points, depending on user age group; in this case, 74% of children under six were shown to be vulnerable to dental fluorosis. Results are contrary to current standard for fluoride in Malawi groundwater of 6 mg/L, highlighting the need for policy change. Detailed policy recommendations are presented based on the results of this study.


Sign in / Sign up

Export Citation Format

Share Document