scholarly journals Removal of Pollutants in Mine Wastewater by a Non-Cytotoxic Polymeric Bioflocculant from Alcaligenes faecalis HCB2

Author(s):  
Tsolanku Sidney Maliehe ◽  
Albertus Kotze Basson ◽  
Nkosinathi Goodman Dlamini

Bioflocculation is a physicochemical technique often employed to efficiently remove colloidal water pollutants. Consequently, in this study, a bioflocculant was produced, characterised and applied to remove pollutants in mine wastewater. The maximum flocculation activity of 92% was recorded at 30 °C, pH 9.0 when maltose and urea were used as energy sources and 72 h of fermentation at the inoculum size of 1% (v/v). K+ proved to be a favourable cation. The bioflocculant yield of 4 g/L was obtained. Scanning electron microscopy illustrated a hexagonal-like structure of the bioflocculant. It is composed of carbohydrates and proteins in mass proportion of 88.6 and 9.5%, respectively. The Fourier transform infrared spectrum revealed the presence of hydroxyl, amide and amino functional groups. More than 73% of the bioflocculant was obtained after exposure to 600 °C using the thermogravimetric analyser. Human embryonic kidney 293 (HEK 293) cells exhibited 95% viability after being treated with 200 µg/µL of the bioflocculant. The flocculation mechanisms were proposed to be as a result of a double layer compression by K+, chemical reactions and bridging mechanism. The removal efficiencies of 59, 72, and 75% on biological oxygen demand, chemical oxygen demand and sulphur, were obtained respectively. Thus, the bioflocculant have potential use in wastewater treatment.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jiaa Park ◽  
Yong Chool Boo

Tyrosinase (TYR) catalyzes rate-limiting reactions of cellular melanin synthesis, and its inhibitors are of commercial interest as potential skin whitening agents. However, the limited availability of human TYR makes the screening of TYR inhibitors difficult. To overcome this hurdle, we transformed nonmelanocytic human embryonic kidney (HEK) 293 cells to express human TYR constitutively. Using these cells as a source of human TYR, the ethanolic extracts of 52 medicinal plants grown in Korea were tested for human TYR activity, and the extract of Vitis Viniferae Caulis (dried stems of the grape tree,Vitis viniferaL.) was found to inhibit human TYR activity potently. An active compound was isolated from this extract by solvent fractionation followed by liquid column chromatography and identified as resveratrol by spectroscopic and chromatographic analyses. Resveratrol was determined to be a highly potent inhibitor of human TYR (IC50=0.39 μg mL−1) as compared with p-coumaric acid (IC50=0.66 μg mL−1) and arbutin (IC50>100 μg mL−1) and inhibited melanin synthesis by human epidermal melanocytes at subtoxic concentrations. This study suggests that resveratrol and resveratrol-containing extracts of Vitis Viniferae Caulis have a potential use as skin whitening agents.


2021 ◽  
Vol 22 (9) ◽  
pp. 4637
Author(s):  
Daniel Barth ◽  
Andreas Lückhoff ◽  
Frank J. P. Kühn

The human apoptosis channel TRPM2 is stimulated by intracellular ADR-ribose and calcium. Recent studies show pronounced species-specific activation mechanisms. Our aim was to analyse the functional effect of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), commonly referred to as PIP2, on different TRPM2 orthologues. Moreover, we wished to identify the interaction site between TRPM2 and PIP2. We demonstrate a crucial role of PIP2, in the activation of TRPM2 orthologues of man, zebrafish, and sea anemone. Utilizing inside-out patch clamp recordings of HEK-293 cells transfected with TRPM2, differential effects of PIP2 that were dependent on the species variant became apparent. While depletion of PIP2 via polylysine uniformly caused complete inactivation of TRPM2, restoration of channel activity by artificial PIP2 differed widely. Human TRPM2 was the least sensitive species variant, making it the most susceptible one for regulation by changes in intramembranous PIP2 content. Furthermore, mutations of highly conserved positively charged amino acid residues in the membrane interfacial cavity reduced the PIP2 sensitivity in all three TRPM2 orthologues to varying degrees. We conclude that the membrane interfacial cavity acts as a uniform PIP2 binding site of TRPM2, facilitating channel activation in the presence of ADPR and Ca2+ in a species-specific manner.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1131 ◽  
Author(s):  
Federico Di Marco ◽  
Francesco Trevisani ◽  
Pamela Vignolini ◽  
Silvia Urciuoli ◽  
Andrea Salonia ◽  
...  

Pasta is one of the basic foods of the Mediterranean diet and for this reason it was chosen for this study to evaluate its antioxidant properties. Three types of pasta were selected: buckwheat, rye and egg pasta. Qualitative–quantitative characterization analyses were carried out by HPLC-DAD to identify antioxidant compounds. The data showed the presence of carotenoids such as lutein and polyphenols such as indoleacetic acid, (carotenoids from 0.08 to 0.16 mg/100 g, polyphenols from 3.7 to 7.4 mg/100 g). To assess the effect of the detected metabolites, in vitro experimentation was carried out on kidney cells models: HEK-293 and MDCK. Standards of β-carotene, indoleacetic acid and caffeic acid, hydroalcoholic and carotenoid-enriched extracts from samples of pasta were tested in presence of antioxidant agent to determine viability variations. β-carotene and indoleacetic acid standards exerted a protective effect on HEK-293 cells while no effect was detected on MDCK. The concentrations tested are likely in the range of those reached in body after the consumption of a standard pasta meal. Carotenoid-enriched extracts and hydroalcoholic extracts showed different effects, observing rescues for rye pasta hydroalcoholic extract and buckwheat pasta carotenoid-enriched extract, while egg pasta showed milder dose depending effects assuming pro-oxidant behavior at high concentrations. The preliminary results suggest behaviors to be traced back to the whole phytocomplexes respect to single molecules and need further investigations.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 973
Author(s):  
Tilen Koklič ◽  
Alenka Hrovat ◽  
Ramon Guixà-González ◽  
Ismael Rodríguez-Espigares ◽  
Damaris Navio ◽  
...  

This study investigated the effect of type 1 gonadotropin releasing hormone receptor (GnRH-R) localization within lipid rafts on the properties of plasma membrane (PM) nanodomain structure. Confocal microscopy revealed colocalization of PM-localized GnRH-R with GM1-enriched raft-like PM subdomains. Electron paramagnetic resonance spectroscopy (EPR) of a membrane-partitioned spin probe was then used to study PM fluidity of immortalized pituitary gonadotrope cell line αT3-1 and HEK-293 cells stably expressing GnRH-R and compared it with their corresponding controls (αT4 and HEK-293 cells). Computer-assisted interpretation of EPR spectra revealed three modes of spin probe movement reflecting the properties of three types of PM nanodomains. Domains with an intermediate order parameter (domain 2) were the most affected by the presence of the GnRH-Rs, which increased PM ordering (order parameter (S)) and rotational mobility of PM lipids (decreased rotational correlation time (τc)). Depletion of cholesterol by methyl-β-cyclodextrin (methyl-β-CD) inhibited agonist-induced GnRH-R internalization and intracellular Ca2+ activity and resulted in an overall reduction in PM order; an observation further supported by molecular dynamics (MD) simulations of model membrane systems. This study provides evidence that GnRH-R PM localization may be related to a subdomain of lipid rafts that has lower PM ordering, suggesting lateral heterogeneity within lipid raft domains.


Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 568
Author(s):  
Jakob L. Kure ◽  
Thommie Karlsson ◽  
Camilla B. Andersen ◽  
B. Christoffer Lagerholm ◽  
Vesa Loitto ◽  
...  

The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Praveen Kumar Siddalingappa Virupakshappa ◽  
Manjunatha Bukkambudhi Krishnaswamy ◽  
Gaurav Mishra ◽  
Mohammed Ameenuddin Mehkri

The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and   % removal of crude oil.


2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

Sign in / Sign up

Export Citation Format

Share Document