scholarly journals Spatial-Temporal Variability of Soil Organic Matter in Urban Fringe over 30 Years: A Case Study in Northeast China

Author(s):  
Hongbin Liu ◽  
Shunting Li ◽  
Yuepeng Zhou

The study on soil organic matter (SOM) is of great importance to regional cultivated land use and protection. Based on data collected via continuous and high-density soil samples (0–20 cm) and socio-economic data collected from household survey and local bureau of statistics, this study employs geostatistics and economic statistical methods to investigate the spatial-temporal variation of SOM contents during 1980–2010 in the urban fringe of Sujiatun district in Shenyang City, China. We find that: (1) as to temporal variation, SOM contents in the study sites decreased from 30.88 g/kg in 1980 to 22.63 g/kg in 2000. It further declined to 20.07 g/kg in 2010; (2) in terms of spatial variation, the closer to city center, the more decline of SOM contents. Contrarily, SOM contents could even rise in outer suburb area; and (3) SOM content variation may be closely related to human factors such as farmers’ land use target and behaviour including inputs of chemical and organic fertilizers, types of crops and etc. These findings are conductive to grasp the overall trend of SOM variation and the influence of farmers’ land use behaviour on it. Furthermore, they could provide support for policymakers to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production in the urban fringe areas.

2018 ◽  
Vol 10 (4) ◽  
pp. 943 ◽  
Author(s):  
Ádám Rieder ◽  
Balázs Madarász ◽  
Judit Szabó ◽  
Dóra Zacháry ◽  
Anna Vancsik ◽  
...  

Radiocarbon ◽  
1996 ◽  
Vol 38 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Randye L. Rutberg ◽  
David S. Schimel ◽  
Irena Hajdas ◽  
Wallace S. Broecker

We compared four adjacent soil plots in an effort to determine the effect of land use on soil carbon storage. The plots were located at the High Plains Agricultural Research Laboratory near Sidney, Nebraska. We measured 14C, total carbon, total nitrogen and 137Ce to determine the size and turnover times of rapid and stable soil organic matter (SOM) pools, and their relation to land-use practices. Results were consistent with the model produced by Harrison, Broecker and Bonani (1993a) in that the 14C surface soil data fell on the time trend plots of world 14C surface soil data, indicating that the natural sod and non-tilled plots had a rapidly turning over SOM pool, comprising ca. 75% of surface soil carbon, and the tilled plots had a rapidly turning over SOM pool, comprising only 50% of surface soil carbon.


2021 ◽  
Author(s):  
Anna Schneider ◽  
Alexander Bonhage ◽  
Florian Hirsch ◽  
Alexandra Raab ◽  
Thomas Raab

<p>Human land use and occupation often lead to a high heterogeneity of soil stratigraphy and properties in landscapes within small, clearly delimited areas. Legacy effects of past land use also are also abundant in recent forest areas. Although such land use legacies can occur on considerable fractions of the soil surface, they are hardly considered in soil mapping and inventories. The heterogenous spatial distribution of land use legacy soils challenges the quantification of their impacts on the landscape scale. Relict charcoal hearths (RCH) are a widespread example for the long-lasting effect of historical land use on soil landscapes in forests of many European countries and also northeastern USA. Soils on RCH clearly differ from surrounding forest soils in their stratigraphy and properties, and are most prominently characterized by a technogenic substrate layer with high contents of charcoal. The properties of RCH soils have recently been studied for several regions, but their relevance on the landscape scale has hardly been quantified.</p><p>We analyse and discuss the distribution and ecological relevance of land use legacy soils across scales for RCH in the state of Brandenburg, Germany, with a focus on soil organic matter (SOM) stocks. Our analysis is based on a large-scale mapping of RCH from digital elevation models (DEM), combined with modelled SOM stocks in RCH soils. The distribution of RCH soils in the study region shows heterogeneity at different scales. The large-scale variation is related to the concentration of charcoal production to specific forest areas and the small-scale accumulation pattern is related to the irregular distribution of single RCH within the charcoal production fields. Considerable fractions of the surface area are covered by RCH soils in the major charcoal production areas within the study region. The results also show that RCH can significantly contribute to the soil organic matter stocks of forests, even for areas where they cover only a small fraction of the soil surface. The study highlights that considering land use legacy effects can be relevant for the results of soil mapping and inventories; and that prospecting and mapping land use legacies from DEM can contribute to improving such approaches.</p>


1991 ◽  
Vol 39 (4) ◽  
pp. 237-246 ◽  
Author(s):  
J. Wolf ◽  
L.H.J.M. Janssen

The changed crop rotation on arable land, the decreasing grassland area and the increase in forest area in the Netherlands resulted in a decrease in C pool size. For the calculation of this C pool a method requiring only three input data (average amount of crop or tree residue rate, soil organic matter decomposition and the humification coefficient) has been applied. However the method can only be applied to situations in equilibrium where all three input data are equal. For a changing land use a new state of equilibrium and rate of change in C pool size can be calculated. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2011 ◽  
Vol 71 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Francisco Matus ◽  
Claudia Hidalgo ◽  
Carlos Monreal ◽  
Isabel Estrada ◽  
Mariela Fuentes ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Benjapon Kunlanit ◽  
Laksanara Khwanchum ◽  
Patma Vityakon

The objectives of this study were to investigate effects of land use on accumulation of soil organic matter (SOM) in the soil profile (0–100 cm) and to determine pattern of SOM stock distribution in soil profiles. Soil samples were collected from five soil depths at 20 cm intervals from 0 to 100 cm under four adjacent land uses including forest, cassava, sugarcane, and paddy lands located in six districts of Maha Sarakham province in the Northeast of Thailand. When considering SOM stock among different land uses in all locations, forest soils had significantly higher total SOM stocks in 0–100 cm (193 Mg·C·ha−1) than those in cassava, sugarcane, and paddy soils in all locations. Leaf litter and remaining rice stover on soil surfaces resulted in a higher amount of SOM stocks in topsoil (0–20 cm) than subsoil (20–100 cm) in some forest and paddy land uses. General pattern of SOM stock distribution in soil profiles was such that the SOM stock declined with soil depth. Although SOM stocks decreased with depth, the subsoil stock contributes to longer term storage of C than topsoils as they are more stabilized through adsorption onto clay fraction in finer textured subsoil than those of the topsoils. Agricultural practices, notably applications of organic materials, such as cattle manure, could increase subsoil SOM stock as found in some agricultural land uses (cassava and sugarcane) in some location in our study. Upland agricultural land uses, notably cassava, caused high rate of soil degradation. To restore soil fertility of these agricultural lands, appropriate agronomic practices including application of organic soil amendments, return of crop residues, and reduction of soil disturbance to increase and maintain SOM stock, should be practiced.


Sign in / Sign up

Export Citation Format

Share Document