scholarly journals Investigation of the Interaction Mechanism of Perfluoroalkyl Carboxylic Acids with Human Serum Albumin by Spectroscopic Methods

Author(s):  
Huilun Chen ◽  
Qianyu Wang ◽  
Yanping Cai ◽  
Rongfang Yuan ◽  
Fei Wang ◽  
...  

Perfluoroalkyl carboxylic acids (PFCAs) are some of the most significant pollutants in human serum, and are reported to be potentially toxic to humans. In this study, the binding mechanism of PFCAs with different carbon lengths to human serum albumin (HSA) was studied at the molecular level by means of fluorescence spectroscopy under simulated physiological conditions and molecular modeling. Fluorescence data indicate that PFCAs with a longer carbon chain have a stronger fluorescence quenching ability. Perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) had little effect on HSA. Fluorescence quenching of HSA by perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) was a static process that formed a PFCA–HSA complex. Electrostatic interactions were the main intermolecular forces between PFOA and HSA, while hydrogen bonding and van der Waals interactions played important roles in the combination of PFDA and HSA. In fact, the binding of PFDA to HSA was stronger than that of PFOA as supported by fluorescence quenching and molecular docking. In addition, infrared spectroscopy demonstrated that the binding of PFOA/PFDA resulted in a sharp decrease in the β-sheet and α-helix conformations of HSA. Our results indicated that the carbon chain length of PFCAs had a great impact on its binding affinity, and that PFCAs with longer carbon chains bound more strongly.

2015 ◽  
Vol 68 (12) ◽  
pp. 1894 ◽  
Author(s):  
Mohsen Oftadeh ◽  
Golamreza Rezaei Behbahani ◽  
Ali Akbar Saboury ◽  
Shahnaz Rafiei

The binding parameters between cyclodextrins (CDs) and human serum albumin (HSA) were investigated by isothermal titration calorimetry (ITC), fluorescence quenching, and UV-vis absorption spectroscopy at 300 K in 50 mM phosphate buffer solution. Among the various CDs investigated, β-CD has the greater ability to decrease the aggregation of HSA and the results indicated that the inhibition order is γ-CD < α-CD < β-CD. The obtained heats for HSA+CDs interactions were reported and analysed in terms of the extended solvation model, which was used to reproduce the enthalpies of HSA interactions with CDs over a broad range of complex concentrations. The binding constant and thermodynamic parameters were obtained. These suggested that the binding reaction was driven by both enthalpy and entropy, and electrostatic interactions played a major role in the stabilising of HSA. The parameters and reflected the net effect of β-CD on the HSA stability at low and high cyclodextrin concentrations, respectively. The positive values for indicated that β-CD stabilises the HSA structure at low concentrations. The UV absorption intensity of theses complexes increased and a slight red shift was observed in the absorbance wavelength with increasing the CD concentration. The fluorescence intensity of HSA decreased regularly and a slight blue shift was observed for the emission wavelength with increasing CD concentration. The results indicate that the CD complex could quench the fluorescence of HSA and changes the microenvironment of the tryptophan residue.


RSC Advances ◽  
2014 ◽  
Vol 4 (110) ◽  
pp. 64559-64564 ◽  
Author(s):  
Jafar Ezzati Nazhad Dolatabadi ◽  
Vahid Panahi-Azar ◽  
Abolfazl Barzegar ◽  
Ali Akbar Jamali ◽  
Fahimeh Kheirdoosh ◽  
...  

For the first time, PG interaction with HSA using fluorescence quenching method, circular dichroism spectroscopy and molecular modeling was investigated.


RSC Advances ◽  
2015 ◽  
Vol 5 (89) ◽  
pp. 73290-73300 ◽  
Author(s):  
Bao Tu ◽  
Zhi-Feng Chen ◽  
Zhi-Juan Liu ◽  
Rong-Rong Li ◽  
Yu Ouyang ◽  
...  

The influence of functional groups on the interaction has been studied detailed here; fluorescence quenching degrees and the conformation change are considered through multiple methods; molecular docking has been introduced to verify related results.


2018 ◽  
Vol 62 (2) ◽  
pp. 85-91 ◽  
Author(s):  
J. Staničová ◽  
K. Želonková ◽  
V. Verebová ◽  
B. Holečková ◽  
J. Dianovský

Abstract The interactions between the fungicide tebuconazole and human serum albumin were investigated using fluorescence and circular dichroism spectroscopies. The experimental results showed that the fluorescence quenching of the protein by the tebuconazole molecule was a result of the formation of a ligand-protein complex with a binding constant of 8.51×103 l.mol−1 and the number of binding sites in the macromolecule was close to 1. These findings demonstrated the fact that although the binding affinity of tebuconazole to the protein may be slight, it was very similar to other triazole fungicides. In addition, tebuconazole stabilized the α-helical secondary structure of the human serum albumin due to the increase of the α-content in the protein macromolecule.


2021 ◽  
Author(s):  
Thais Meira Menezes ◽  
Caio Rodrigo Dias de Assis ◽  
Antonio Marinho da Silva Neto ◽  
Priscila Gubert ◽  
Marcos Gomes Ghislandi ◽  
...  

Azo dyes like Drimaren Red CL-5B (DR, CI Reactive Red 241) represent a class of compounds extensively used in the textile industry and are extremely dangerous to the environment and human health. Therefore, understanding the binding characteristics between such substances and biological macromolecules is essential from a toxic-kinetic perspective. The molecular interaction between DR and Human Serum Albumin (HSA) was investigated through spectroscopic techniques and molecular docking approaches. The results indicate that DR quenches HSA fluorescence following a static mechanism (corroborated by UV-Vis studies) with a moderate interaction (Ka~105 M-1), guided by electrostatic interactions (DS> 0 and DH< 0). DR is 5.52 nm distant from fluorophore residue Trp-214 (according to FRET investigations), and the interaction is mainly related to Tyr residues (as revealed by synchronous fluorescence). The Ellman assay identified a decrease in the content of HSA free thiol. The results of the RLS demonstrate that there are HSA alterations, suggesting damage to the confirmation of the protein. Molecular docking suggests the binding site of DR was located in subdomain IIB HSA, corroborating the experimental properties. Finally, the results suggest a high potential for DR toxicity triggered by contact with key proteins, which affects the biomolecule functionalities.


2020 ◽  
Vol 4 (4) ◽  
pp. 51
Author(s):  
Małgorzata Nattich-Rak ◽  
Maria Dąbkowska ◽  
Zbigniew Adamczyk

Human serum albumin (HSA) layers are adsorbed on mica under controlled diffusion transport at pH 3.5 and various ionic strengths. The surface concentration of HSA is directly determined by AFM imaging of single molecules. It is shown that the adsorption kinetics derived in this way is quantitatively described using the random sequential (RSA) adsorption model. The electrokinetic characteristics of the HSA layers at various pHs comprising their zeta potential are acquired in situ while using the streaming potential method. It is shown that at pH 3.5 the zeta potential of mica becomes positive for HSA concentrations above 3000 μm−2. At larger pHs, HSA layers exhibit negative zeta potential for the entire range of coverage. Thorough characteristics of these monolayers at various pHs were performed applying the colloid deposition method involving negatively charged polystyrene microparticles. The kinetics of their deposition and their maximum coverage are determined as a function of the HSA layer surface concentration, pH, and ionic strength. An anomalous deposition of microparticles on substrates also exhibiting a negative zeta potential is observed, which contradicts the Derjaguin, Landau, Vervey, Overbeek (DLVO) theory. This effect is interpreted in terms of heterogeneous charge distribution that results from molecule concentration fluctuations. It is also shown that the maximum concentration of microparticles abruptly decreases with the electric double-layer thickness that is regulated by changing ionic strength, which indicates that their deposition is governed by electrostatic interactions. One can argue that the results obtained in this work can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles on protein layers.


Sign in / Sign up

Export Citation Format

Share Document