scholarly journals Occurrence and Health-Risk Assessment of Trace Metals in Geothermal Springs within Soutpansberg, Limpopo Province, South Africa

Author(s):  
Olatunde Samod Durowoju ◽  
Georges-Ivo Ekosse Ekosse ◽  
John Ogony Odiyo

Geothermal springs are natural geological phenomena that occur throughout the world. South Africa is blessed with several springs of this nature. Limpopo province contains 31% of all geothermal springs in the country. The springs are classified according to the residing mountain: Soutpansberg, Waterberg and Drakensberg. This study focused on the geothermal springs within the Soutpansberg region; that is, Mphephu, Siloam, Sagole and Tshipise. The study was aimed at assessing the occurrence and potential health risk associated with drinking water from geothermal springs within Soutpansberg. Geothermal springs and boreholes were sampled for a period of 12 months (May 2017–May 2018) to accommodate two major seasons in the study areas. The physicochemical and trace metal compositions of the geothermal springs and boreholes (tepid and hot) were analyzed using ion chromatography (IC) (Dionex Model DX 500) and inductively coupled plasma-mass spectrometer (ICP-MS). Trace metal concentrations of the geothermal springs and boreholes were within permissible drinking water guidelines by the South African National Standards (SANS) and World Health Organisation (WHO), with exception of mercury (Hg), which is high in summer season. The bioaccumulation from regular consumption could, however, result in negative effects. Pearson’s correlation revealed that there is a direct relationship between temperature and pH, and some of the trace metals (V, Zn, Hg, Pb). This implies dissolution of minerals (rock-water interaction) under slightly high temperature. Multivariate statistics further elucidate the relationship and possible sources of the trace metals. Therefore, it can be inferred that the rock-water interaction is the main geochemical process governing the release of trace metals in groundwater. Hazard Index values for both children and adults were higher than 1, and this implies that the communities are at high risk of non-cancer health effects. Further, As, Cr and Cd were found to be the highest contributors to the potential cancer risk in the study areas, with children having a higher risk than adults. Therefore, there is a need for clinical/epidemiological study, and regular monitoring and control measures, to verify actual prevalence of cancer and protect human health, particularly the children, within the study areas.

1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


2016 ◽  
Vol Volume 112 (Number 11/12) ◽  
Author(s):  
Rabelani Mudzielwana ◽  
Mugera W. Gitari ◽  
Titus A.M. Msagati ◽  
◽  
◽  
...  

Abstract Groundwater is a widely used and affordable source of drinking water in most of the rural areas of South Africa. Several studies have indicated that groundwater in some boreholes in South Africa has a fluoride concentration above the level recommended by the World Health Organization (1.5 mg/L). Fluoride concentrations above the permissible limit (>1.5 mg/L) lead to dental fluorosis, with even higher concentrations leading to skeletal fluorosis. In the present work, we evaluate the application of smectite-rich clay soil from Mukondeni (Limpopo Province, South Africa) in defluoridation of groundwater. The clay soil was characterised by mineralogy using X-ray diffraction, by elemental composition using X-ray fluorescence and by morphology using scanning electron microscopy. Surface area and pore volume was determined by the Brunauer–Emmett–Teller surface analysis method. Cation exchange capacity and pHpzc of the soil were also evaluated using standard laboratory methods. Batch experiments were conducted to evaluate and optimise various operational parameters such as contact time, adsorbent dose, pH and initial adsorbate concentration. It was observed that 0.8 g/100 mL of smectite-rich clay soil removed up to 92% of fluoride from the initial concentration of 3 mg/L at a pH of 2 with a contact time of 30 min. The experimental data fitted well to a Langmuir adsorption isotherm and followed pseudo second order reaction kinetics. Smectite-rich clay soil showed 52% fluoride removal from field groundwater with an initial fluoride concentration of 5.4 mg/L at an initial pH of 2 and 44% removal at a natural pH of 7.8. Therefore smectite-rich clay soil from Mukondeni has potential for application in defluoridation of groundwater. Chemical modification is recommended to improve the defluoridation capacity.


2017 ◽  
Vol 17 (6) ◽  
pp. 4251-4263 ◽  
Author(s):  
Andrew D. Venter ◽  
Pieter G. van Zyl ◽  
Johan P. Beukes ◽  
Micky Josipovic ◽  
Johan Hendriks ◽  
...  

Abstract. Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1–2. 5 and PM2. 5–10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5–10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1–2. 5 and PM2. 5–10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 641 ◽  
Author(s):  
Junhua Wu ◽  
Yi Man ◽  
Guangyi Sun ◽  
Lihai Shang

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 990 ◽  
Author(s):  
Lebea Nthunya ◽  
Sebabatso Maifadi ◽  
Bhekie Mamba ◽  
Arne Verliefde ◽  
Sabelo Mhlanga

The problem of limited water supply in the Vhembe District (Limpopo Province, South Africa) is exacerbated by a preponderance of dissolved salts, which cause disagreeable taste and odour in the water as reported by the communities using this water for drinking. The water treatment plant that supplies the treated water to the communities in the District sources this raw water from the Nandoni Dam at the Luvuvhu river catchment. There are no scientific studies that have been reported in the literature that focused on determining the levels of water salinity from various water sources in the municipalities of the District. Water samples from various sites across the Nandoni Dam, a primary source of domestic water supply in the region, were collected through each season over a period of twelve months in order to ascertain the concentrations of dissolved salts in the dam. Onsite analyses of the water samples were conducted using the YSI ProDSS multimeter, while the laboratory water analyses were conducted using the spectroquant and atomic absorption spectrometers. Although salinity tests seem to indicate that the water sampled across most of the Nandoni Dam is brackish during all seasons of the year with the highest being 750 mg/L, water samples from the dam mid-outlet and the treatment plant are slightly below the World Health Organization (WHO) brackish water bracket of 500 mg/L with unfavourable taste for drinking. Results from this study indicate that the water sourced from the Nandoni Dam is not suitable for human consumption and therefore requires integrated water resource management, as well as robust and cost-effective water desalination treatment.


Sign in / Sign up

Export Citation Format

Share Document