scholarly journals It Takes Time to Unravel the Ecology of War in Gaza, Palestine: Long-Term Changes in Maternal, Newborn and Toddlers’ Heavy Metal Loads, and Infant and Toddler Developmental Milestones in the Aftermath of the 2014 Military Attacks

Author(s):  
Nabil al Baraquoni ◽  
Samir R. Qouta ◽  
Mervi Vänskä ◽  
Safwat Y. Diab ◽  
Raija-Leena Punamäki ◽  
...  

Toxicant, teratogen and carcinogen metal war remnants negatively affect human health. The current study analyzes, first, the persistence of heavy metal contamination in newborn hair in four cohorts across time in Gaza Palestine; second, the change in mothers’ and infants’ heavy metal contamination from birth to toddlerhood; and third, the impact of heavy metal contamination on infants’ and toddlers’ growth and development. The hair of newborns was analyzed for twelve heavy metals by Inductively Coupled Plasma Mass Spectrometry (ICP/MS) in cohorts recruited at delivery in 2011, 2015, 2016, and 2018–2019. In the 2015 cohort, mothers’ hair samples were taken at delivery, and toddlers and mothers hair were also analyzed 18 months later. Growth levels of infants at six months and toddlers at 18 months were assessed according to World Health Organization (WHO) standards according to a mother report and pediatric check-up, respectively. 1. The level of metal contamination in utero was persistently high across 8 years, 2011, 2015, 2016, 2019, following three major military attacks (2009, 2012, 2014). 2. The 2015 cohort babies exposed in utero to attacks in 2014 at six months showed association of high load at birth in mother of arsenic and in newborn of barium with underweight, of barium and molybdenum in newborn with stunting. 3. Eighteen months after birth, toddlers had a higher level of metals in hairs than when they were born, while, in their mothers, such levels were similar to those at delivery, confirming persistence in the environment of war remnants. Underweight and stunting, both in infants and toddlers, were higher than reported for previous years, as well as being progressive within the cohort. Severe environmental factors, metal contamination and food insecurity put Gaza’s infant health at risk.

2021 ◽  
Author(s):  
Soni Kumari ◽  
Amarnath Mishra

In the era of industrialization, pollution has totally deteriorated the quality and diversity of life. Heavy metal contaminations are the major causes of environment deteriorations. The basic reasons are natural as well as anthropogenic. Chief sources of heavy metal contamination are air pollution, river sediments, sewage sludge, town waste composts, agricultural chemicals like fertilizers and pesticides, and industrial waste like factories releasing chemicals, anthropogenic activities, etc. Agricultural soils in many parts of the world are generally contaminated by heavy metal toxicity such as Cd, Cu, Zn, Ni, Co, Pb, Hg, As, etc. These are due to the long-term use of phosphate fertilizers, sewage sludge, dust from smelters, industrial waste, etc. Heavy metals in soils are detected with some specific instruments like atomic absorption spectroscopy, inductively coupled plasma, inductively coupled plasma-mass spectroscopy, and X-ray fluorescence and spectroscopy. Among all these instruments, atomic absorption spectroscopy (AAS) is the best because it gives the precise quantitative determination. AAS is a method applied for measuring the quantity of the trace elements present in the soil or any other samples.


2018 ◽  

<p>The objective of the study is to determine accumulation and translocation of heavy metals from soil to paddy straw irrigated with urban sewage wastewater in peri-urban region of Girudhumal subbasin area in Madurai. The soil samples were collected in seven locations irrigated with treated and untreated wastewater and analyzed for physical properties like pH, EC, bulk density, soil type, major (N,P,K) and micronutrients (Fe, Mn, Cu, Zn) and heavy metals Ni, Cd, Pb. SEM analysis showed that soil structure is significantly influenced by wastewater irrigation. It confirms that the wastewater irrigation disturbs soil structure and affecting the plant growth in long run.&nbsp; Pb content was higher than the prescribed safe limits in S5 and S6 location, similarly, Ni also was higher than the safe limit in all the locations. Pollution Load Index values are in the range of 0.08-0.56 for all sites, and it indicated that chance of heavy metal contamination is less. The EF values show moderate enrichment to Ni and Zn, Significant enrichment for Cd and Cu, Extremely high for Pb and deficiency for Mn. All these results confirmed that there is no immediate risk of heavy metal pollution, however with respect to Pb and Ni the plant tissues are showing higher values. The transfer factor for heavy metals from soil to paddy straw is less than 0.5 for Cd and for others is more than 0.5 indicated greater chances for heavy metal contamination.</p>


2020 ◽  
Vol 14 ◽  
pp. 117863022092141
Author(s):  
Nguyen Thi Minh Ngoc ◽  
Nguyen Van Chuyen ◽  
Nguyen Thi Thu Thao ◽  
Nguyen Quang Duc ◽  
Nguyen Thi Thu Trang ◽  
...  

Background: Heavy metal contamination and related risks for the environment and human health are matters of increasing concern. Methods: The levels of 4 heavy metals (Cr, Cd, Pb, and As) were evaluated in 2 water types (surface and well), 4 types of seafood (tiger shrimp, stuffed snail, snake-head fish, and catfish), and 27 types of vegetables (12 leafy vegetables, 4 pea plants, 4 tuber vegetables, and 7 herbs) that are commonly consumed in northern coastal communes located in Vietnam. Atomic absorption spectrometry was employed for quantification. Results: The mean concentrations of heavy metals detected in water, seafood, and vegetable samples exceeded the national permitted standards and World Health Organization (WHO) recommendation values by at least 2-fold, 2.5-fold, and 5-fold for surface water, vegetables, and well water, respectively. The concentrations of all 4 heavy metals detected in seafood samples were higher than the standards. The levels of heavy metals decreased with increasing distance between the sample collection point and the pollution source. Conclusions: This is the first report of heavy metal contamination of common sources of food and water in the northern coastal area of Vietnam. Significantly, the concentrations of heavy metals detected in study samples exceeded the regulatory limits. These results underscore the importance of continued monitoring and the development of intervention measures to ensure that the quality of food and water meets established standards and protects the health of the local population.


2021 ◽  
Vol 13 (9) ◽  
pp. 1698
Author(s):  
Ruhollah Taghizadeh-Mehrjardi ◽  
Hassan Fathizad ◽  
Mohammad Ali Hakimzadeh Ardakani ◽  
Hamid Sodaiezadeh ◽  
Ruth Kerry ◽  
...  

Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg−1 class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils.


2019 ◽  
Vol 22 (2) ◽  
pp. 203
Author(s):  
Baskoro Rochaddi ◽  
Agus Sabdono ◽  
Muhammad Zainuri

The present study was performed to assess the level of heavy metal contamination in shallow groundwater of Pati and Rembang coastal areas. Groundwater sample analysis indicated that Mercury and Arsenic were detected in the groundwater samples in the range 0.004 µg L-1 and 0.115-0.310 µg L-1 , respectively. Compared to the standard limits of the heavy metals contents in the water sample by World Health Organization (WHO) limits and Indonesian Drinking and Domestic Water Quality Standard for Ground Water (IWQS), groundwater of Semarang and Demak Coastal Areas was contaminated with heavy metals. This study has confirmed the presence of heavy metal contamination of some shallow groundwater supplies in the coastal areas of Semarang and Demak.Penelitian ini dilakukan untuk menilai tingkat kontaminasi logam berat di air tanah dangkal di wilayah pantai Pati dan Rembang. Analisis sampel air tanah menunjukkan bahwa Merkurius dan Arsenik terdeteksi dalam sampel air tanah dalam kisaran 0,004 μg L-1 dan 0,115-0,310 μg L-1, masing-masing. Dibandingkan dengan batas standar kadar logam berat dalam sampel air oleh batas Organisasi Kesehatan Dunia (WHO) dan Standar Kualitas Air Minum dan Domestik Indonesia untuk Air Tanah (IWQS), air tanah Wilayah Semarang dan Demak telah terkontaminasi dengan logam berat. Studi ini telah mengkonfirmasi adanya kontaminasi logam berat dari beberapa pasokan air tanah dangkal di wilayah pesisir Semarang dan Demak.


2022 ◽  
Vol 46 (1) ◽  
Author(s):  
K. P. Shimod ◽  
V. Vineethkumar ◽  
T. K. Prasad ◽  
G. Jayapal

Abstract Background In the last few decades, the air, water, and soil are contaminated due to different anthropogenic activities and severely affect the environmental quality. Pollution is the harmful effect and creates undesirable changes in the land use and land cover pattern. The growth of urbanization leads to the degradation of the ecosystem and ultimately affects the living and non-living organisms. In view of these, the present investigation is carried out to assess the heavy metal pollution in major towns due to the impact of urbanization in Kannur district and desirable conclusions were drawn. Results The results shows that higher level of heavy metal pollution is observed in major towns of Kannur district. Conclusion The heavy metal contamination in the major towns of Kannur district is mainly due the anthropogenic activities. The discharge of domestic effluents and industrial waste is the major source of heavy metal pollution. In-depth studies and proper waste management plans are needed to decrease the level of heavy metal contamination prevailing in the study area.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ammar Abdulrahman Jairoun ◽  
Moyad Shahwan ◽  
Sa’ed H. Zyoud

Abstract A specific safety concern is the possibility that a dietary supplement could be contaminated with heavy metals. This research was undertaken to investigate the daily exposure levels of heavy metals in dietary supplements available in the UAE and to explore the factors associated with the contamination of dietary supplements with heavy metals. A total of 277 dietary supplement samples were collected from the UAE market and prepared for the analysis of selected heavy metal contamination. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the presence of heavy metals. The average daily intake of cadmium was 0.73 μg [95% CI 0.61–0.85], compared to the acceptable daily intake (ADI) of 6 μg; the daily intake of lead was 0.85 μg [95% CI 0.62–1.07], compared to the acceptable daily intake (ADI) of 20 μg; and the daily intake of arsenic was 0.67 μg [95% CI 0.57–0.78], compared to the acceptable daily intake of 10 μg. Although the dietary supplements available in the UAE have low levels of heavy metal contamination, numerous individuals are consuming a number of different dietary supplements every day and thereby may experience a cumulative level of toxic exposure. Dietary supplements formulations (Categories), dosage forms and country of origin are strong determents of heavy metal contamination in dietary supplements products.


Sign in / Sign up

Export Citation Format

Share Document