scholarly journals Matching Ecosystem Services Supply and Demand through Land Use Optimization: A Study of the Guangdong-Hong Kong-Macao Megacity

Author(s):  
Wenjing Wang ◽  
Tong Wu ◽  
Yuanzheng Li ◽  
Hua Zheng ◽  
Zhiyun Ouyang

Shortfalls and mismatches between the supply and demand of ecosystem services (ES) can be detrimental to human wellbeing. Studies focused on these problems have increased in recent decades, but few have applied land use optimization to reduce such spatial mismatches. This study developed a methodology to identify ES mismatches and then use these mismatches as objectives for land use optimization. The methodology was applied to the Guangdong-Hong Kong-Macao “Greater Bay Area” (GBA), a megacity of over 70 million people and one of the world’s largest urban agglomerations. Considering the demand for a healthy and secure living environment among city-dwellers, we focused on three ES: heat mitigation, flood mitigation, and recreational services. The results showed large spatial heterogeneity in supply and demand for these three ES. However, compared to current conditions in the GBA, our model showed that optimized land use allocation could better match the supply and demand for heat mitigation (number of beneficiaries increased by 15%), flood mitigation (amount of population exposed to flood damage decreased by 37%), and recreation (number of beneficiaries increased by 14%). By integrating land use allocation and spatial mismatch analysis, this methodology provides a feasible way to align ES supply and demand to advance urban and regional sustainability.

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Wei Shui ◽  
Kexin Wu ◽  
Yong Du ◽  
Haifeng Yang

Bay areas are endowed with unique sea and land resources, location advantages, and high environmental carrying capacities. The rapid urbanization process has intensified the demand for limited natural resources, leading to a series of problems in coastal zones such as land use conflicts and the degradation of ecosystem services. Taking Quanzhou, a bay city in a metropolitan region, as an example, this paper established an accounting model of ecosystem services supply and consumption demand based on multisource data (meteorological site data, land use data and statistical data). We estimated the supply capacity and consumption demand of provisioning services, regulating services, and cultural services in Quanzhou from 2005 to 2015. In addition, the supply and demand of ecosystem services were simulated for 2030 under different scenarios. The results showed that the supply capacity of ecosystem services in Quanzhou was greater than the demand in general, but the supply-demand difference showed a gradual decrease. The high-value areas of supply capacity were concentrated in the upstream basin in the non-bay area, while the high-value areas of consumption demand were located downstream of the river basin in the bay area. The supply-demand difference in the bay area was negative, indicating that it was in a state of supply-demand imbalance and that the ecological security was under threat. Among the three simulated scenarios in 2030, the balance between supply and demand declined compared with the results of 2015, with the most serious decline in the natural scenario. The method to quantify the evolution of spatial and temporal patterns in supply and demand of ecosystem services could provide a decision-making reference for natural resource management in Quanzhou. This is conducive to the improvement and establishment of urban ecological security research systems, especially in bay areas that are lacking research.


2021 ◽  
Vol 13 (6) ◽  
pp. 1174
Author(s):  
Yeyu He ◽  
Yaoqiu Kuang ◽  
Yalan Zhao ◽  
Zhu Ruan

Exploring the spatial relationship between ecosystem services (ES) and human disturbance intensity (HDI) is vital for maintaining regional ecological security. This study aims to explore the spatial correlation between ES and HDI in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) and provide meaningful implications for coastal ecological planning. Multi-source remote sensing data, remote sensing software, and geographic information system provided initial data and technical support for this research. We integrated four human pressures (population, land-use, traffic, and energy) to map the HDI in the GBA for 2018. Coastal ES were comprehensively considered and spatially visualized by extracting the ES sources. The geographically weighted Pearson correlation coefficient and bivariate local Moran were used to quantitatively reflect and spatially visualize the detailed relationship between ES and HDI. Our study presents several key findings. First, the central and southern parts of the GBA are under strong HDI, dominated by a dense population and intense land utilization. Second, the kernel density of ES sources can better manifest the spatial distribution of ES objectively in comparison to the traditional model calculation. Provisioning services mainly originate from the periphery of the central cities; cultural services are highly concentrated in the heartland of the GBA; and regulating and maintenance services have high density in the outermost regions. Third, ES and HDI have a significant correlation, and the geographically weighted Pearson correlation coefficient and local indicator of spatial association cluster maps illustrate that unlike the global findings, the local correlation is spatially nonstationary as the local scale is affected by specific human activities, natural conditions, regional development, and other local factors. Four, high-capacity regions of ES provision are mainly under high HDI. Areas with high provisioning service values are mainly affected by population and traffic pressure, whereas regulating and maintenance services and cultural services are mainly dominated by high-density populations. Regulating and maintenance services are also affected by land-use pressure. We determine that human disturbance has negative spillover effects on ES, which should be the focus in regional ecological planning.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


2021 ◽  
Vol 13 (13) ◽  
pp. 7044
Author(s):  
Dawei Wen ◽  
Song Ma ◽  
Anlu Zhang ◽  
Xinli Ke

Assessment of ecosystem services supply, demand, and budgets can help to achieve sustainable urban development. The Guangdong-Hong Kong-Macao Greater Bay Area, as one of the most developed megacities in China, sets up a goal of high-quality development while fostering ecosystem services. Therefore, assessing the ecosystem services in this study area is very important to guide further development. However, the spatial pattern of ecosystem services, especially at local scales, is not well understood. Using the available 2017 land cover product, Sentinel-1 SAR and Sentinel-2 optical images, a deep learning land cover mapping framework integrating deep change vector analysis and the ResUnet model was proposed. Based on the produced 10 m land cover map for the year 2020, recent spatial patterns of the ecosystem services at different scales (i.e., the GBA, 11 cities, urban–rural gradient, and pixel) were analyzed. The results showed that: (1) Forest was the primary land cover in Guangzhou, Huizhou, Shenzhen, Zhuhai, Jiangmen, Zhaoqing, and Hong Kong, and an impervious surface was the main land cover in the other four cities. (2) Although ecosystem services in the GBA were sufficient to meet their demand, there was undersupply for all the three general services in Macao and for the provision services in Zhongshan, Dongguan, Shenzhen, and Foshan. (3) Along the urban–rural gradient in the GBA, supply and demand capacity showed an increasing and decreasing trend, respectively. As for the city-level analysis, Huizhou and Zhuhai showed a fluctuation pattern while Jiangmen, Zhaoqing, and Hong Kong presented a decreasing pattern along the gradient. (4) Inclusion of neighborhood landscape led to increased demand scores in a small proportion of impervious areas and oversupply for a very large percent of bare land.


2019 ◽  
Vol 11 (15) ◽  
pp. 1834 ◽  
Author(s):  
Shu Zhang ◽  
Chuanglin Fang ◽  
Wenhui Kuang ◽  
Fengyun Sun

Urban land use/cover and efficiency are important indicators of the degree of urbanization. However, research about comparing their changes at the megaregion level is relatively rare. In this study, we depicted the differences and inequalities of urban land and efficiency among megaregions in China using China’s Land Use/cover Dataset (CLUD) and China’s Urban Land Use/cover Dataset (CLUD-Urban). Furthermore, we analyzed regional inequality using the Theil index. The results indicated that the Guangdong-Hong Kong-Macao Great Bay Area had the highest proportion of urban land (8.03%), while the Chengdu-Chongqing Megaregion had the highest proportion of developed land (64.70%). The proportion of urban impervious surface area was highest in the Guangdong-Hong Kong-Macao Great Bay Area (75.16%) and lowest in the Chengdu-Chongqing Megaregion (67.19%). Furthermore, the highest urban expansion occurred in the Yangtze River Delta (260.52 km2/a), and the fastest period was 2000–2010 (298.19 km2/a). The decreasing Theil index values for the urban population and economic density were 0.305 and 1.748, respectively, in 1980–2015. This study depicted the development trajectory of different megaregions, and will expect to provide a valuable insight and new knowledge on reasonable urban growth modes and sustainable goals in urban planning and management.


Author(s):  
Y. Zeng ◽  
W. Huang ◽  
W. Jin ◽  
S. Li

The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.


Author(s):  
Jahanbakhsh Balist ◽  
Bahram Malekmohammadi ◽  
Hamid Reza Jafari ◽  
Ahmad Nohegar ◽  
Davide Geneletti

Abstract Water resources modeling can provide valuable information to planners. In this respect, water yield is an ecosystem service with significant roles in the sustainability of societies and ecosystems. The present study aimed to model the supply and demand of water resources and identify their scarcity and stress in the Sirvan river basin. For this purpose, we employed the ecosystem services concept as new thinking in earth sciences and using soil, climate, and land use data. Firstly, the Landsat satellite images of 2019 were prepared after different corrections, and the land use map was produced. Then, precipitation, evapotranspiration, root restricting layer depth, and evapotranspiration coefficients of the land uses were prepared and modeled in InVEST 3.8.9 software environment. The findings indicated that the water yield in this river basin is 5,381 million m3, with sub-basins 5, 11, and 1 having the highest water yield per year and sub-basin 2 having the lowest water yield. Moreover, sub-basins 5 and 11 had the highest water consumption. Based on the estimated water scarcity and stress index, sub-basin 8 has experienced water scarcity and sub-basin 4 water stress. We conclude that applying the InVEST Water Yield model to assess water resource status at the basin and sub-basins level can provide suitable results for planning.


Author(s):  
Y. Zeng ◽  
W. Huang ◽  
W. Jin ◽  
S. Li

The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.


Sign in / Sign up

Export Citation Format

Share Document