scholarly journals Advancement in Benthic Microbial Fuel Cells toward Sustainable Bioremediation and Renewable Energy Production

Author(s):  
Mohammad Faisal Umar ◽  
Mohd Rafatullah ◽  
Syed Zaghum Abbas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Norli Ismail

Anthropogenic activities are largely responsible for the vast amounts of pollutants such as polycyclic aromatic hydrocarbons, cyanides, phenols, metal derivatives, sulphides, and other chemicals in wastewater. The excess benzene, toluene and xylene (BTX) can cause severe toxicity to living organisms in wastewater. A novel approach to mitigate this problem is the benthic microbial fuel cell (BMFC) setup to produce renewable energy and bio-remediate wastewater aromatic hydrocarbons. Several mechanisms of electrogens have been utilized for the bioremediation of BTX through BMFCs. In the future, BMFCs may be significant for chemical and petrochemical industry wastewater treatment. The distinct factors are considered to evaluate the performance of BMFCs, such as pollutant removal efficiency, power density, and current density, which are discussed by using operating parameters such as, pH, temperature and internal resistance. To further upgrade the BMFC technology, this review summarizes prototype electrode materials, the bioremediation of BTX, and their applications.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 612
Author(s):  
Szymon Potrykus ◽  
Luis Fernando León-Fernández ◽  
Janusz Nieznański ◽  
Dariusz Karkosiński ◽  
Francisco Jesus Fernandez-Morales

In this work, the effect of the external load on the current and power generation, as well as on the pollutant removal by microbial fuel cells (MFCs), has been studied by step-wise modifying the external load. The load changes included a direct scan, in which the external resistance was increased from 120 Ω to 3300 Ω, and a subsequent reverse scan, in which the external resistance was decreased back to 120 Ω. The reduction in the current, experienced when increasing the external resistance, was maintained even in the reverse scan when the external resistance was step-wise decreased. Regarding the power exerted, when the external resistance was increased below the value of the internal resistance, an enhancement in the power exerted was observed. However, when operating near the value of the internal resistance, a stable power exerted of about 1.6 µW was reached. These current and power responses can be explained by the change in population distribution, which shifts to a more fermentative than electrogenic culture, as was confirmed by the population analyses. Regarding the pollutant removal, the effluent chemical oxygen demand (COD) decreased when the external resistance increased up to the internal resistance value. However, the effluent COD increased when the external resistance was higher than the internal resistance. This behavior was maintained in the reverse scan, which confirmed the modification in the microbial population of the MFC.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hung-Yin Tsai ◽  
Wei-Hsuan Hsu ◽  
Ying-Chen Huang

Microbial fuel cells (MFCs), which can generate low-pollution power through microbial decomposition, have become a potentially important technology with applications in environmental protection and energy recovery. The electrode materials used in MFCs are crucial determinants of their capacity to generate electricity. In this study, we investigate the performance of using carbon nanotube (CNT) and graphene-modified carbon-cloth electrodes in a single-chamber MFC. We develop a process for fabricating carbon-based modified electrodes andEscherichia coliHB101 in an air-cathode MFC. The results show that the power density of MFCs can be improved by applying a coat of either graphene or CNT to a carbon-cloth electrode, and the graphene-modified electrode exhibits superior performance. In addition, the enhanced performance of anodic modification by CNT or graphene was greater than that of cathodic modification. The internal resistance decreased from 377 kΩ for normal electrodes to 5.6 kΩ for both electrodes modified by graphene with a cathodic catalyst. Using the modified electrodes in air-cathode MFCs can enhance the performance of power generation and reduce the associated costs.


2016 ◽  
Vol 11 (2) ◽  
pp. 406-412
Author(s):  
Jahangeer Jahangeer ◽  
Pankaj Gupta ◽  
Shaktibala Shaktibala ◽  
Shamim Rayani

The aim of this manuscript is to review and conceptualization of electricity generation from solid waste using Microbial Fuel Cells (MFCs) technology. MFCs technology has an ample future for both waste remediation and renewable energy generation due to an aerobic microbe produces less sludge in MFCs compared with conventional methods. Electricity can be generated from different organic matters such as fatty acids, proteins, wastewater, and carbohydrates etc. Elegant energy can be generated which helps for compensating the costs. The performance of MFCs depends on the system architecture, internal resistance, species and amount of bacteria on the anode, type of organic matter, chemical characteristics of the medium (pH, solution conductivity and chemical concentration) and the electrode surface characteristics. One set of practical experiment was performed using single chamber MFCs and the power generation along with COD removal was measured. The results show significant power generation and effective COD removal parallel in MFC cell. This study will help in design and research for renewable energy production and waste management.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Hsuan Hsu ◽  
Hung-Yin Tsai ◽  
Ying-Chen Huang

Microbial fuel cells (MFCs) generate low-pollution power by feeding organic matter to bacteria; MFC applications have become crucial for energy recovery and environmental protection. The electrode materials of any MFC affect its power generation capacity. In this research, nine single-chamber MFCs with various electrode configurations were investigated and compared with each other. A fabrication process for carbon-based electrode coatings was proposed, and Escherichia coli HB101 was used in the studied MFC system. The results show that applying a coat of either graphene or carbon nanotubes (CNTs) to a stainless steel mesh electrode can improve the power density and reduce the internal resistance of an MFC system. Using the proposed surface modification method, CNTs and graphene used for anodic and cathodic modification can increase power generation by approximately 3–7 and 1.5–4.5 times, respectively. Remarkably, compared to a standard MFC with an untreated anode, the internal resistances of MFCs with CNTs- and graphene-modified anodes were reduced to 18 and 30% of standard internal resistance. Measurements of the nine systems we studied clearly presented the performance levels of CNTs and graphene applied as surface modification of stainless steel mesh electrodes.


2021 ◽  
Vol 57 (13) ◽  
pp. 1540-1542
Author(s):  
Abhishek Dey ◽  
Frances A. Houle ◽  
Carolyn E. Lubner ◽  
Marta Sevilla ◽  
Wendy J. Shaw

(Photo)electrocatalysis holds the promise to enable the broad implementation of renewable energies. The articles highlighted in this issue emphasize advances in types and activity of catalysts and electrode materials for a variety of reactions and technologies.


Author(s):  
Lu Yang ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1192
Author(s):  
Aneta Szymajda ◽  
Grażyna Łaska ◽  
Magdalena Joka

Recently, biomass application as a renewable energy source is increasing worldwide. However, its availability differs in dependence on the location and climate, therefore, agricultural residues as cow dung (CD) are being considered to supply heat and/or power installation. This paper aims at a wide evaluation of CD fuel properties and its prospect to apply in the form of pellets to direct combustion installations. Therefore, the proximate, ultimate composition and calorific value were analyzed, then pelletization and combustion tests were performed, and the ash characteristics were tested. It was found that CD is a promising source of bioenergy in terms of LHV (16.34 MJ·kg−1), carbon (44.24%), and fixed carbon (18.33%) content. During pelletization, CD showed high compaction properties and at a moisture content of 18%,and the received pellets’ bulk density reached ca. 470 kg·m−3 with kinetic durability of 98.7%. While combustion, in a fixed grate 25 kW boiler, high emissions of CO, SO2, NO, and HCl were observed. The future energy sector might be based on biomass and this work shows a novel approach of CD pellets as a potential source of renewable energy available wherever cattle production is located.


2021 ◽  
Vol 13 (14) ◽  
pp. 8057
Author(s):  
Mostafa Ghasemi ◽  
Mehdi Sedighi ◽  
Yie Hua Tan

In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.


2016 ◽  
Vol 203 ◽  
pp. 27-34 ◽  
Author(s):  
Kandasamy Saravanakumar ◽  
Davoodbasha MubarakAli ◽  
Kandasamy Kathiresan ◽  
Nooruddin Thajuddin ◽  
Naiyf S. Alharbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document