scholarly journals The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China

Author(s):  
Qing Li ◽  
Yong Zhou ◽  
Li Wang ◽  
Qian Zuo ◽  
Siqi Yi ◽  
...  

Controlling soil erosion is beneficial to the conservation of soil resources and ecological restoration. Understanding the spatial distribution characteristics of soil erosion helps find the key areas for soil control projects and optimal scale for investing in a soil and water conservation project at the lowest cost. This study aims to answer the question of how the spatial distribution of soil erosion in Hubei Province changed between 2000 and 2020. Moreover, how do the effects of natural factors and human activities on soil erosion vary over the years? What are the differences in landscape pattern characteristics and the spatial cluster of soil erosion at multiple administrative scales? We simulated the spatial distribution of soil erosion in Hubei province from 2000 to 2020 by the Chinese Soil Loss Equation model at three administrative scales. We investigated the relationship between soil erosion and driving factors by Geodector. We explored the landscape pattern and hotspots of land at different levels of soil erosion by Fragstat and hotspot analysis. The results show that: (1) The average soil erosion rate decreased from 2000 to 2020. Soil erosion is severe in the mountainous areas of western Hubei province, while it is less severe in the central plains. (2) Land-cover type, precipitation, and normalized difference vegetation index are the most influencing factors of soil erosion in 2000–2010, 2015, and 2020, respectively. (3) The aggregation index values at the town scale are higher than those at the city and county scales, while the fractal dimension index values at the town scale are lower, which indicates that soil erosion projects are most efficient when the project unit is ‘town’. (4) At the town scale, if the hotspot area (6.84% of the total area) is treated as the protection target, it can reduce 50.42% of the total soil erosion of Hubei province. Hotspots of soil erosion overlap with high erosion zones, mainly in the northwestern, northeastern, and southwestern parts of Hubei province in 2000, while the hotspots in northwestern Hubei disappear in 2020. In conclusion, land managers in Hubei should optimize the land-use structure, soil and water conservation in slope land, and eco-engineering controls at the town scale.

Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2014 ◽  
Vol 977 ◽  
pp. 290-294 ◽  
Author(s):  
Zhi Qiang Yu ◽  
Qiang Gao ◽  
Wen Feng Ding

In recent years , with the acceleration of the process of China's modernization cities , soil erosion and lead to many more serious environmental problems . This paper describes the harm to the social construction of ecological civilization city soil and water loss,analyzed the causes of soil erosion,and finally illustrates the importance of soil and water conservation of the city and puts forward some suggestions for the construction of soil and water conservation.


Author(s):  
Xiaohui Huang ◽  
Qian Lu ◽  
Fei Yang

Purpose This paper aims to build a theoretical model of the impact of farmers’ adoption behavior of soil and water conservation measures on the agricultural output to analyze the impact of farmers’ adoption behavior of soil and water conservation measures on agricultural output. Design/methodology/approach Based on the field survey data of 808 farmers households in three provinces (regions) of the Loess Plateau, this paper using the endogenous switching regression model to analyze the effect of farmers’ adoption behavior of soil and water conservation measures on agricultural output. Findings Soil erosion has a significant negative impact on agricultural output, and soil erosion has a significant positive impact on farmers’ adoption of soil and water conservation measures. Farmers adopt soil and water conservation measures such as engineering measures, biological measures and tillage measures to cope with soil erosion, which can increase agricultural output. Based on the counterfactual hypothesis, if farmers who adopt soil and water conservation measures do not adopt the corresponding soil and water conservation measures, their average output per ha output will decrease by 2.01%. Then, if farmers who do not adopt soil and water conservation measures adopt the corresponding soil and water conservation measures, their average output per ha output will increase by 12.12%. Government support and cultivated land area have a significant positive impact on farmers’ adoption behavior of soil and water conservation measures. Research limitations/implications The research limitation is the lack of panel data. Practical implications Soil erosion has a significant negative impact on agricultural output, and soil erosion has a significant positive impact on farmers’ adoption of soil and water conservation measures. Farmers adopt soil and water conservation measures such as engineering measures, biological measures and tillage measures to cope with soil erosion, which can increase agricultural output. Social implications The conclusion provides a reliable empirical basis for the government to formulate and implement relevant policies. Originality/value The contributions of this paper are as follows: the adoption behavior of soil and water conservation measures and agricultural output are included into the same analytical framework for empirical analysis, revealing the influencing factors of farmers’ adoption behavior of soil and water conservation measures and their output effects, enriching existing research. Using endogenous switching regression model and introducing instrumental variables to overcome the endogenous problem between the adoption behavior of soil and water conservation measures and agricultural output, and to analyze the influencing factors of farmers’ adoption behavior of soil and water conservation measures and its impact on agricultural output. Using the counter-factual idea to ensure that the two matched individuals have the same or similar attributes, to evaluate the average treatment effect of the behavior of soil and water conservation measures, to estimate the real impact of adaptation measures on agricultural output as accurately as possible and to avoid misleading policy recommendations.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 20 ◽  
Author(s):  
Yaping Wang ◽  
Wenzhao Liu ◽  
Gang Li ◽  
Weiming Yan ◽  
Guangyao Gao

The tableland-gully region is one of the main topographic-ecological units in the Chinese Loess Plateau (CLP), and the soil in this region suffers from serious water erosion. In recent years, much work has been conducted to control soil erosion in this area. This paper summarized the development of soil and water conservation researches in the CLP from the bibliometric perspective based on the Science Citation Index (SCI) and Chinese National Knowledge Infrastructure (CNKI) databases. The quantity of SCI literatures has increased rapidly since 2007, with an average annual growth rate of 21.4%, and the quantity of CNKI literatures in the last decade accounted for 62% of the past 30 years. The development trends showed that early SCI research was related to loess geology in the context of ecological remediation, while the CNKI literature focused on agricultural production under comprehensive management. Over time, the research themes of the two databases gradually became unified, i.e., the management of sloping farmland and the improvement of agricultural productivity. Subsequently, the themes gradually extended to the disposition of comprehensive control measures for soil erosion and the environmental effect of agro-fruit ecosystems. The highly cited papers mainly focused on soil reservoir reconstruction, soil erosion factors, and environmental effects of vegetation restoration. Two aspects need further study, including (i) the effect of soil erosion control under different ecological remediation patterns; and, (ii) the ecosystem maintenance mechanism and regulation approaches that are based on the sustainable utilization of soil and water resources in the tableland-gully region of the Loess Plateau.


2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


Soil Research ◽  
2012 ◽  
Vol 50 (8) ◽  
pp. 645 ◽  
Author(s):  
Rody Nigel ◽  
Soonil D. D. V. Rughooputh

Soil erosion by water is one of the most important natural resources management problems in the world. The damages it causes on-site are soil loss, breakdown of soil structure, and decline in organic matter content, nutrient content, fertility, and infiltration rate. Lands with the highest erosion risk on Mauritius Island are crop cultivations (sugarcane, tea, vegetables) on erosion-susceptible terrain (slopes >20% coupled with highly erodible soils). The locations of such lands on Mauritius were mapped during previous, qualitatively based regional-scale erosion studies. In order to propose soil conservation strategies, there is a need to apply a more quantitative approach to supplement the previous, qualitatively based studies. This paper reports an application of the Revised Universal Soil Loss Equation (RUSLE) within a geographical information system in order to estimate soil loss on the island, and particularly for the high-erosion areas. Results show that total soil loss on the island is estimated at 298 259 t year–1, with soil loss from high-erosion areas summing 84 780 t year–1 (28% of total soil loss). If all of the high-erosion areas were afforested, their soil loss would be reduced to 10 264 t year–1, i.e. a reduction of 88% for the high-erosion areas and a reduction of 25% for the island. This study thus calls for soil and water conservation programs directed to these erosion-prone areas before the land degradation and environmental damage they are causing become irreversible. The methodological approach used in this work to quantitatively estimate soil loss from erosion-prone areas can be adopted in other countries as the basis for a nationwide erosion assessment in order to better inform environmental policy needs for soil and water conservation.


Author(s):  
Yibeltal Yihunie

This paper was aimed to review the spatial and temporal dynamics of soil erosion and conservation efforts being practiced in Ethiopia. In the country, there is highly fluctuating dynamics of soil erosion and its loss rate is large as per the stated international standards. Even if the efforts to conserve soil and water in the country are affected by different factors like agro ecology and the choice of conservation measures, it was practiced since 1970s. Apart from the government’s effort as well as the contribution of different non-governmental organizations in increasing the awareness and understanding towards the impacts of soil erosion, the land tenure system, the existence of poor technology, lack of finance, limited technical support and limited participation of the local community are some of the challenges in Ethiopia restricting the effectiveness of conservation efforts. In addition, the research activities done regarding soil and water conservation in the country are not following integrated and participatory approach. Thus, this makes the efforts regarding research and finding out the best approach for sustainable soil and water conservation practices inefficient. Therefore, promoting integrated and participatory approach as well as linking with income generating business like carbon trading through climate change mitigation is the best options for the expansion and sustainability of soil and water conservation measures in Ethiopia.


2021 ◽  
Author(s):  
Veerle Vanacker ◽  
Armando Molina ◽  
Miluska Rosas-Barturen ◽  
Vivien Bonnesoeur ◽  
Francisco Román-Dañobeytia ◽  
...  

Abstract. Soil erosion by water is affecting natural and anthropogenic environments through its impacts on water quality and availability, loss of soil nutrients, flood risk, sedimentation in rivers and streams, and damage to civil infrastructure. Sustainable management aims to avoid, reduce and reverse soil erosion and can provide multiple benefits for the environment, population, and livelihoods. We conducted a systematic review of 121 case studies from the Andes to answer the following questions: (1) Which erosion indicators allow us to assess the effectiveness of natural infrastructure? (2) What is the overall impact of working with natural infrastructure on on-site and off-site erosion mitigation? and (3) Which locations and types of studies are needed to fill critical gaps in knowledge and research? Three major categories of natural infrastructure were considered: protective vegetation, soil and water conservation measures, and adaptation measures that regulate the flow and transport of water. From the suite of physical, chemical and biological indicators commonly used in soil erosion research, two indicators were particularly relevant: soil organic carbon (SOC) of topsoil, and soil loss rates at the plot scale. In areas with protective vegetation and/or soil and water conservation measures, the SOC of topsoil is –on average– 1.3 to 2.8 times higher than in areas under traditional agriculture. Soil loss rates in areas with natural infrastructure were reported to be 38 % to 54 % lower than rates measured in untreated croplands. Further research is needed to evaluate whether the reported effectiveness holds during extreme events related to, for example, El Niño–Southern Oscillation.


Author(s):  
Haibo Zhang ◽  
Jianjun Zhang ◽  
Shouhong Zhang ◽  
Chunxue Yu ◽  
Ruoxiu Sun ◽  
...  

Soil erosion risk assessment is an essential foundation for the planning and implementation of soil and water conservation projects. The commonality among existing studies is that they considered different indicators (e.g., rainfall and slope) in order to determine the soil erosion risk; however, the majority of studies in China neglect one important indicator, namely the slope aspect. It is widely accepted that the vegetation and distribution of rainfall differs according to the different slope aspects (such as sunny slope and shady slope) and these attributes will accordingly influence the soil erosion. Thus, existing studies neglecting this indicator cannot reflect the soil erosion well. To address this problem, a flexible soil erosion risk assessment method that supports decision makers in identifying priority areas in soil and water conservation planning was developed in the present study. Firstly, in order to verify the impact of the slope aspect on soil erosion, field investigations were conducted, and its impact on the characteristics of the community in the study area was analyzed. Secondly, six assessment indicators were selected, including slope gradient, precipitation, NDVI, land use, soil texture and slope aspect. Next, a developed multi-criteria decision analysis (MCDA) method based on the Choquet integral was adopted to assess the soil erosion risk. The MCDA method, combining objective data with subjective assessment based on Choquet integral, could solve the weight problem encountered when using the quantitative method. The parameters required can be modified according to the soil erosion types, assessment scales, and data availability. The synergistic and inhibitory effects among the soil erosion parameters were also considered in the assessment. Finally, the soil erosion risk results in the Xinshui River watershed revealed that more attention should be paid to the slope of farmland and grassland during the planning and management of soil and water conservation projects. The methodology used in the current study can support decision makers in planning and implementing soil and water conservation measures in regions with different erosion types.


Sign in / Sign up

Export Citation Format

Share Document