scholarly journals Do People Trust in Robot-Assisted Surgery? Evidence from Europe

Author(s):  
Joan Torrent-Sellens ◽  
Ana Isabel Jiménez-Zarco ◽  
Francesc Saigí-Rubió

(1) Background: The goal of the paper was to establish the factors that influence how people feel about having a medical operation performed on them by a robot. (2) Methods: Data were obtained from a 2017 Flash Eurobarometer (number 460) of the European Commission with 27,901 citizens aged 15 years and over in the 28 countries of the European Union. Logistic regression (odds ratios, OR) to model the predictors of trust in robot-assisted surgery was calculated through motivational factors, using experience and sociodemographic independent variables. (3) Results: The results obtained indicate that, as the experience of using robots increases, the predictive coefficients related to information, attitude, and perception of robots become more negative. Furthermore, sociodemographic variables played an important predictive role. The effect of experience on trust in robots for surgical interventions was greater among men, people between 40 and 54 years old, and those with higher educational levels. (4) Conclusions: The results show that trust in robots goes beyond rational decision-making, since the final decision about whether it should be a robot that performs a complex procedure like a surgical intervention depends almost exclusively on the patient’s wishes.

2020 ◽  
Author(s):  
Joan Torrent-Sellens ◽  
Ana Jiménez-Zarco ◽  
Francesc Saigí-Rubió

BACKGROUND Increasingly intelligent and autonomous robots are destined to have a huge impact on our society. Their adoption, however, represents a major change to the healthcare sector’s traditional practices, which, in turn, poses certain challenges. To what extent is it possible to foresee a near-future scenario in which minor routine surgery is directed by robots? And what are the patients’ or general public’s perceptions of having surgical procedures performed on them by robots, be it totally or partially? A patient’s trust in robots and AI may facilitate the spread and use of such technologies. OBJECTIVE The goal of our study was to establish the factors that influence how people feel about having a medical operation performed on them by a robot. METHODS We used data from a 2017 Flash Eurobarometer (number 460) of European Commission with 27,901 citizens aged 15 years and over in the 28 countries of the European Union. The research designs and tests a technology acceptance model (TAM). Logistic regression (odds ratios, OR) to model the predictors of trust in robot-assisted surgery was calculated through motivational factors, robots using experience and sociodemographic independent variables. RESULTS The negative relationship between most of the predictors of ease of use, expected benefits and attitude towards robots, and confidence in robot-assisted surgery was contrasted. The only non-sociodemographic predictor variable that has a positive relationship with trust in robots participating in a surgical intervention is previous experience in the use of robots. In this context, we analyze the confidence predictors for three different levels of robot use experience (zero use, average use, and high use). The results obtained indicate that, as the experience of using robots increases, the predictive coefficients related to information, attitude and perception of robots become more negative. Research results also determined that variables of a sociodemographic nature played an important predictive role. It was confirmed that the effect of experience on trust in robots for surgical interventions was greater among men, people between 40 and 54 years old, and those with higher educational levels. CONCLUSIONS Despite the considerable benefits for the patient that the use of robots can bring in a surgical intervention, the results obtained show that trust in robots goes beyond rational decision-making. By contrasting the reasons that generate trust and mistrust in robots, especially by highlighting the experience of use as a key element, the research makes a new contribution to the state of the art and draws practical implications of the use of robots for health policy and practice.


2021 ◽  
Vol 3 (1) ◽  
pp. e000042
Author(s):  
Sejal Patel ◽  
Maroeska M Rovers ◽  
Michiel J P Sedelaar ◽  
Petra L M Zusterzeel ◽  
Ad F T M Verhagen ◽  
...  

ObjectivesTo develop an interactive tool that estimates what potential benefits are needed for the robot to provide value for money when compared with endoscopic or open surgical interventions.DesignA generic online interactive tool was developed to analyze the (health) effects needed to compensate for the additional costs of using a surgical robotic system from a healthcare perspective. The application of the tool is illustrated with a hypothetical new surgical robotic platform. A synthesis of evidence from different sources was used combined with interviews with surgeons.SettingFlexible tool that can be adapted to flexible settings.ParticipantsAny hospital patient group for which robotic, endoscopic or open surgical procedures may be considered as appropriate treatment alternatives (eg, urology, gynecology, and so on).InterventionRobotically assisted surgical interventions.ComparatorEndoscopic or open surgical interventions.Main outcome measuresThresholds of how much (health) effect is needed for robot-assisted surgery to provide value for money and to become cost-effective.ResultsThe utilization rate of the surgical robotic system and a reduction in complications appeared to be important aspects in determining the value for money. To become cost-effective, it was deemed important for new surgical robotic systems to have added clinical benefit and become less costly than the current system.ConclusionsThis paper and its assisting interactive tool can be used by clinicians, researchers, and policymakers to gain insight in the benefit needed to provide value for money when using a (new) surgical robotic system or, when the effects are known or can be estimated, to assess the value for money for a specific indication. For robotic surgery to provide most value for money, we recommend assessing for each indication whether the necessary effects seem achievable.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Desirè Pantalone ◽  
Giulia Satu Faini ◽  
Francesca Cialdai ◽  
Elettra Sereni ◽  
Stefano Bacci ◽  
...  

AbstractThe target of human flight in space has changed from permanence on the International Space Station to missions beyond low earth orbit and the Lunar Gateway for deep space exploration and Missions to Mars. Several conditions affecting space missions had to be considered: for example the effect of weightlessness and radiations on the human body, behavioral health decrements or communication latency, and consumable resupply. Telemedicine and telerobotic applications, robot-assisted surgery with some hints on experimental surgical procedures carried out in previous missions, had to be considered as well. The need for greater crew autonomy in health issues is related to the increasing severity of medical and surgical interventions that could occur in these missions, and the presence of a highly trained surgeon on board would be recommended. A surgical robot could be a valuable aid but only inasfar as it is provided with multiple functions, including the capability to perform certain procedures autonomously. Space missions in deep space or on other planets present new challenges for crew health. Providing a multi-function surgical robot is the new frontier. Research in this field shall be paving the way for the development of new structured plans for human health in space, as well as providing new suggestions for clinical applications on Earth.


2020 ◽  
Vol 7 (5) ◽  
pp. 91-108
Author(s):  
M. S. Mosoyan ◽  
D. A. Fedorov

Today, robot-assisted surgery and the use of robots in medicine marks a qualitatively new stage in the development of minimally invasive technologies and endovideosurgery, due to the high level of accuracy, functionality and ergonomics of modern robotic systems. With the help of robotic technologies, the quality of diagnostic manipulations as well as the results of therapeutic procedures and surgical interventions are significantly improved, which ultimately leads to an improved prognosis and quality of life for patients, while also expanding the capabilities of clinicians. This review article presents the main historical milestones and prerequisites for the development of automation and robotic technologies used in various industries, from ancient times to the present. The history of the use of robotic procedures in various fields of medicine is briefly described. Special attention is paid to robot-assisted surgery as one of the main bases for applying modern technologies. At the moment, we can safely say that medical robotics plays a very important role in the development of surgery of the future.


2020 ◽  
Vol 6 (3) ◽  
pp. 127-130
Author(s):  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Nico Lösch ◽  
Peter P. Pott

AbstractAccess to systems for robot-assisted surgery is limited due to high costs. To enable widespread use, numerous issues have to be addressed to improve and/or simplify their components. Current systems commonly use universal linkage-based input devices, and only a few applicationoriented and specialized designs are used. A versatile virtual reality controller is proposed as an alternative input device for the control of a seven degree of freedom articulated robotic arm. The real-time capabilities of the setup, replicating a system for robot-assisted teleoperated surgery, are investigated to assess suitability. Image-based assessment showed a considerable system latency of 81.7 ± 27.7 ms. However, due to its versatility, the virtual reality controller is a promising alternative to current input devices for research around medical telemanipulation systems.


Sign in / Sign up

Export Citation Format

Share Document