scholarly journals Acute Effects of Particulate Matter on All-Cause Mortality in Urban, Rural, and Suburban Areas, Italy

Author(s):  
Matteo Renzi ◽  
Stefano Marchetti ◽  
Francesca de' Donato ◽  
Marilena Pappagallo ◽  
Matteo Scortichini ◽  
...  

Background: Short-term exposure to particulate matter (PM) has been related to mortality worldwide. Most evidence comes from studies conducted in major cities, while little is known on the effects of low concentrations of PM and in less urbanized areas. We aim to investigate the relationship between PM and all-cause mortality at national level in Italy. Methods: Daily numbers of all-cause mortality were collected for all 8092 municipalities of Italy, from 2006 to 2015. A satellite-based spatiotemporal model was developed to estimate daily PM10 (inhalable particles) and PM2.5 (fine particles) concentrations at 1-km resolution. Multivariate Poisson regression models were fit to estimate the association between daily PM and mortality at province level, and then, results were pooled with a random-effects meta-analysis. Associations were estimated by combination of age and sex and degree of urbanization of the municipalities. Flexible functions were estimated to explore the shape of the associations at low PM concentrations. Results: We analyzed 5,884,900 deaths (40% among subjects older than 85 years, 60% occurring outside the main urban areas). National daily mean (interquartile range) PM10 and PM2.5 concentrations were 23 (14) μg/m3 and 15 (11) μg/m3, respectively. Relative increases of mortality per 10 μg/m3 variation in lag 0–5 (average of last six days since death) PM10 and PM2.5 were 1.47% (95% Confidence Intervals (CI): 1.15%, 1.79%) and 1.96% (1.33%, 2.59%), respectively. Associations were highest among elderly and women for PM10 only, similar between rural and urbanized areas, and were present even at low concentrations, e.g., below WHO guidelines. Conclusions: Air pollution was robustly associated with peaks in daily all-cause mortality in Italy, both in large cities and in less urbanized areas of Italy. Current WHO Air Quality Guidelines (2021) for PM10 and PM2.5 are not sufficient to protect public health.

Author(s):  
Alan da Silveira da Silveira Fleck ◽  
Margaux L. Sadoine ◽  
Stéphane Buteau ◽  
Eva Suarthana ◽  
Maximilien Debia ◽  
...  

Background: No study has compared the respiratory effects of environmental and occupational particulate exposure in healthy adults. Methods: We estimated, by a systematic review and meta-analysis, the associations between short term exposures to fine particles (PM2.5 and PM4) and certain parameters of lung function (FEV1 and FVC) in healthy adults. Results: In total, 33 and 14 studies were included in the qualitative synthesis and meta-analyses, respectively. In environmental studies, a 10 µg/m3 increase in PM2.5 was associated with an FEV1 reduction of 7.63 mL (95% CI: −10.62 to −4.63 mL). In occupational studies, an increase of 10 µg/m3 in PM4 was associated with an FEV1 reduction of 0.87 mL (95% CI: −1.36 to −0.37 mL). Similar results were observed with FVC. Conclusions: Both occupational and environmental short-term exposures to fine particles are associated with reductions in FEV1 and FVC in healthy adults.


2021 ◽  
Vol 13 (24) ◽  
pp. 13792
Author(s):  
Jihwan Yang ◽  
Sungho Tae ◽  
Hyunsik Kim

In recent years, particulate matter (PM) has emerged as a major social issue in various industries, particularly in East Asia. PM not only causes various environmental, social, and economic problems but also has a large impact on public health. Thus, there is an urgent requirement for reducing PM emissions. In South Korea, the PM generated at construction sites in urban areas directly or indirectly causes various environmental problems in surrounding areas. Construction sites are considered a major source of PM that must be managed at the national level. Therefore, this study aims to develop a technology for predicting PM emissions at construction sites. First, the major sources of PM at construction sites are determined. Then, PM emission factors are calculated for each source. Furthermore, an algorithm is developed for calculating PM emissions on the basis of an emission factor database, and a system is built for predicting PM emissions at construction sites. The reliability of the proposed technology is evaluated through a case study. The technology is expected to be used for predicting potential PM emissions at construction sites before the start of construction.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Zhiping Niu ◽  
Feifei Liu ◽  
Baojing Li ◽  
Na Li ◽  
Hongmei Yu ◽  
...  

Abstract Background Decreased heart rate variability (HRV) is a predictor of autonomic system dysfunction, and is considered as a potential mechanism of increased risk of cardiovascular disease (CVD) induced by exposure to particulate matter less than 2.5 μm in diameter (PM2.5). Previous studies have suggested that exposure to PM2.5 may lead to decreased HRV levels, but the results remain inconsistent. Methods An updated systematic review and meta-analysis of panel studies till November 1, 2019 was conducted to evaluate the acute effect of exposure to ambient PM2.5 on HRV. We searched electronic databases (PubMed, Web of Science, and Embase) to identify panel studies reporting the associations between exposure to PM2.5 and the four indicators of HRV (standard deviation of all normal-to-normal intervals (SDNN), root mean square of successive differences in adjacent normal-to-normal intervals (rMSSD), high frequency power (HF), and low frequency power (LF)). Random-effects model was used to calculate the pooled effect estimates. Results A total of 33 panel studies were included in our meta-analysis, with 16 studies conducted in North America, 12 studies in Asia, and 5 studies in Europe. The pooled results showed a 10 μg/m3 increase in PM2.5 exposure which was significantly associated with a − 0.92% change in SDNN (95% confidence intervals (95%CI) − 1.26%, − 0.59%), − 1.47% change in rMSSD (95%CI − 2.17%, − 0.77%), − 2.17% change in HF (95%CI − 3.24%, − 1.10%), and − 1.52% change in LF (95%CI − 2.50%, − 0.54%), respectively. Overall, subgroup analysis suggested that short-term exposure to PM2.5 was associated with lower HRV levels in Asians, healthy population, and those aged ≥ 40 years. Conclusion Short-term exposure to PM2.5 was associated with decreased HRV levels. Future studies are warranted to clarity the exact mechanism of exposure to PM2.5 on the cardiovascular system through disturbance of autonomic nervous function.


2021 ◽  
Author(s):  
Karri Saarnio ◽  
Mika Vestenius ◽  
Katriina Kyllönen

The National Reference Laboratory for Air Quality (NRL) ensures the high quality of air quality measurements in Finland by organising audits and intercomparison campaigns. In this project, the conformity of the particulate matter measurements was evaluated with a particular focus on the measurement used for calculating the average exposure index (AEI) of Finland. The representativity and applicability of the AEI measurements made at the Kallio station in Helsinki were evaluated. It was noticed that the results of the Kallio measurement represent well the average fine particle (PM2.5) concentrations and the yearly based trend of fine particles in Finland. In addition, the yearly average concentrations of fine particles have been smaller than the AEI limit value of 8.5 µg/m3, at all individual urban background stations in Finland since year 2015. The measurement results made with the PM monitor used for AEI measurement, i.e. TEOM 1405 analyser at the Kallio station, were compared to the results from the reference method that follows the standard SFS-EN 12341:2014. It was noticed that the uncertainty requirement of 25% was reached and therefore the quality of the measurement is sufficient to use it for the calculation of AEI. However, the fine particle concentrations were generally very low and therefore the requirements given in the standard SFS-EN 16450:2017 for an intercomparison against the reference method were not perfectly fulfilled. This report presents also results from intercomparison measurements made for automated continuous measurement systems (AMS). At the Virolahti station and at the Mäkelänkatu station in Helsinki, PM10 and PM2.5 measurements were compared. In Kuopio and in Lahti, intercomparison measurements were made for PM2.5 only. Based on the results from these intercomparisons, the calibration coefficients both for PM10 and PM2.5 were defined for the first time in Finland for a FIDAS 200 analyser that is a new PM monitor in the Finnish market. It was concluded that FIDAS 200 analysers can be used for the PM measurements in Finland when the calibration coefficients are applied for the data; however, one must note that the presented calibration coefficients do not fulfil the requirements given for the demonstration of equivalence (DoE). Nevertheless, these coefficients are recommended to be used until the official coefficients will be delivered from the next DoE campaign. Two AMS (SHARP 5030 and TEOM 1405) were compared to the reference method for the measurements of PM10 and PM2,5 in Virolahti and in Helsinki, respectively. It was revealed that the calibration coefficients based on the DoE in Kuopio (2014–2015) do not always fit ideally at different locations and seasons due to differences in the environmental characteristics of the measurement sites. Therefore, NRL recommends that DoE should be organised every five years and in between the DoE’s so called ongoing-intercomparison measurements should be carried out continuously. In the ongoing-intercomparison, suitability of the calibration coefficients from DoE will be verified in different locations with varying environmental characteristics. The ongoing-intercomparison campaigns should take place at one site from a half a year to one year and after that, the campaign should continue at a different location similarly. This would ensure that the influence of seasonal differences to the suitability of coefficients will be verified at each measurement site.


1970 ◽  
Vol 33 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Bilkis A Begum ◽  
Swapan K Biswas

Ambient particulate matter (PM10 and PM2.5) samples were collected in different laboratories and sitting rooms at the Atomic Energy Centre Dhaka campus in Dhaka on weekdays using AirMetrics Samplers from September to December 2006.  The samples were analyzed for elemental concentrations by ED XRF method.  Black carbon was analyzed by reflectance.  The data sets were analyzed by reconstructive mass (RCM) methods to check the mass closer and also to identify the possible sources of atmospheric aerosols in these closed areas.  It was observed that in these closed areas, 74 to 98% of the particulate mass belong to fine particles mass (PM2.5).  Mostly three and four sources have been identified in both PM10 and PM2.5 fractions respectively.  The sources are soil, combustion products (signature elements are BC and OC), Pb and Zn containing sources.  It was found that about 70 to 98% of total mass is black carbon together with organic carbon.   Keywords:  RCM, PM, AECD campus, XRF method DOI: 10.3329/jbas.v33i1.2947 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 1, 25-36, 2009


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 454 ◽  
Author(s):  
Jiri Pospisil ◽  
Jiri Huzlik ◽  
Roman Licbinsky ◽  
Michal Spilacek

The dispersion of particulate matter emitted by road transport to the vicinity of roads is predominantly influenced by the character of the air velocity field. The air flow depends on factors such as the speed and direction of the blowing wind, the movement of cars, and the geometries of the buildings around a road. Numerical modeling based on the control volume method was used in this study to describe the relevant processes closely. Detailed air velocity fields were identified in the vicinity of a straight road surrounded by various patterns of built-up urban land. The evaluation of the results was generalized to exponential expressions, affecting the decrease of the mass concentration of fine particles with the increasing distance from the road. The obtained characteristics of the mass concentration fields express the impact of the building geometries and configurations on the dispersion of particulate matter into the environment. These characteristics are presented for two wind speeds, namely, 2 m·s−1 and 4 m·s−1. Furthermore, the characteristics are introduced in relation to three wind directions: perpendicularly, obliquely, and in parallel to the road. The results of the numerical simulations are compared with those obtained via the in-situ measurements, for verification of the validity of the linear emission source calculation.


Sign in / Sign up

Export Citation Format

Share Document