scholarly journals Mindfulness Meditation Improves Musical Aesthetic Emotion Processing in Young Adults

Author(s):  
Xiaolin Liu ◽  
Huijuan Shi ◽  
Yong Liu ◽  
Hong Yuan ◽  
Maoping Zheng

This study explored the behavioral and neural correlates of mindfulness meditation improvement in musical aesthetic emotion processing (MAEP) in young adults, using the revised across-modal priming paradigm. Sixty-two participants were selected from 652 college students who assessed their mindfulness traits using the Mindful Attention Awareness Scale (MAAS). According to the 27% ratio of the high and low total scores, participants were divided into two subgroups: high trait group (n =31) and low trait group (n =31). Participants underwent facial recognition and emotional arousal tasks while listening to music, and simultaneously recorded event-related potentials (ERPs). The N400, P3, and late positive component (LPC) were investigated. The behavioral results showed that mindfulness meditation improved executive control abilities in emotional face processing and effectively regulated the emotional arousal of repeated listening to familiar music among young adults. These improvements were associated with positive changes in key neural signatures of facial recognition (smaller P3 and larger LPC effects) and emotional arousal (smaller N400 and larger LPC effects). Our results show that P3, N400, and LPC are important neural markers for the improvement of executive control and regulating emotional arousal in musical aesthetic emotion processing, providing new evidence for exploring attention training and emotional processing. We revised the affecting priming paradigm and E-prime 3.0 procedure to fulfill the simultaneous measurement of music listening and experimental tasks and provide a new experimental paradigm to simultaneously detect the behavioral and neural correlates of mindfulness-based musical aesthetic processing.

2020 ◽  
Author(s):  
Hugo Najberg ◽  
Laura Wachtl ◽  
Marco Anziano ◽  
Michael Mouthon ◽  
Lucas Spierer

Abstract While declines in inhibitory control, the capacity to suppress unwanted neurocognitive processes, represent a hallmark of healthy aging, whether this function is susceptible to training-induced plasticity in older populations remains largely unresolved. We addressed this question with a randomized controlled trial investigating the changes in behavior and electrical neuroimaging activity induced by a 3-week adaptive gamified Go/NoGo inhibitory control training (ICT). Performance improvements were accompanied by the development of more impulsive response strategies, but did not generalize to impulsivity traits nor quality of life. As compared with a 2-back working-memory training, the ICT in the older adults resulted in a purely quantitative reduction in the strength of the activity in a medial and ventrolateral prefrontal network over the 400 ms P3 inhibition-related event-related potentials component. However, as compared with young adults, the ICT induced distinct configurational modifications in older adults’ 200 ms N2 conflict monitoring medial–frontal functional network. Hence, while older populations show preserved capacities for training-induced plasticity in executive control, aging interacts with the underlying plastic brain mechanisms. Training improves the efficiency of the inhibition process in older adults, but its effects differ from those in young adults at the level of the coping with inhibition demands.


2006 ◽  
Vol 18 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Audrey Duarte ◽  
Charan Ranganath ◽  
Celina Trujillo ◽  
Robert T. Knight

Numerous behavioral studies have suggested that normal aging has deleterious effects on episodic memory and that recollection is disproportionately impaired relative to familiarity-based recognition. However, there is a wide degree of variability in memory performance within the aging population and this generalization may not apply to all elderly adults. Here we investigated these issues by using event-related potentials (ERPs) to measure the effects of aging on the neural correlates of recollection and familiarity in older adults with recognition memory performance that was equivalent to (old-high) or lower than (old-low) that of young adults. Results showed that, behaviorally, old-high subjects exhibited intact recollection but reduced familiarity, whereas old-low subjects had impairments in both recollection and familiarity, relative to the young. Consistent with behavioral results, old-high subjects exhibited ERP correlates of recollection that were topographically similar to those observed in young subjects. However, unlike the young adults, old-high subjects did not demonstrate any neural correlates of familiarity-based recognition. In contrast to the old-high group, the old-low group exhibited neural correlates of recollection that were topographically distinct from those of the young. Our results suggest that the effects of aging on the underlying brain processes related to recollection and familiarity are dependent on individual memory performance and highlight the importance of examining performance variability in normal aging.


2021 ◽  
Vol 222 ◽  
pp. 105011
Author(s):  
Ashley Chung-Fat-Yim ◽  
Gregory J. Poarch ◽  
Kyle J. Comishen ◽  
Ellen Bialystok

Author(s):  
Justine Niemczyk ◽  
Monika Equit ◽  
Katja Rieck ◽  
Mathias Rubly ◽  
Catharina Wagner ◽  
...  

Abstract. Objective: Daytime urinary incontinence (DUI) is common in childhood. The aim of the study was to neurophysiologically analyse the central emotion processing in children with DUI. Method: In 20 children with DUI (mean age 8.1 years, 55 % male) and 20 controls (mean age 9.1 years, 75 % male) visual event-related potentials (ERPs) were recorded after presenting emotionally valent (80 neutral, 40 positive, and 40 negative) pictures from the International Affective Picture System (IAPS) as an oddball-paradigm. All children received a full organic and psychiatric assessment. Results: Children with DUI did not differ significantly from controls regarding responses to emotional pictures in the frontal, central, and parietal regions and in the time intervals 250–450 ms, 450–650 ms, and 650–850 ms after stimulus onset. The patient group had more psychological symptoms and psychiatric comorbidities than the control group. Conclusions: EEG responses to emotional stimuli are not altered in children with DUI. Central emotion processing does not play a major role in DUI. Further research, including a larger sample size, a more homogeneous patient group (regarding subtype of DUI) or brain imaging techniques, could reveal more about the central processing in DUI.


2018 ◽  
Vol 32 (3) ◽  
pp. 106-130 ◽  
Author(s):  
Zsófia Anna Gaál ◽  
István Czigler

Abstract. We used task-switching (TS) paradigms to study how cognitive training can compensate age-related cognitive decline. Thirty-nine young (age span: 18–25 years) and 40 older (age span: 60–75 years) women were assigned to training and control groups. The training group received 8 one-hour long cognitive training sessions in which the difficulty level of TS was individually adjusted. The other half of the sample did not receive any intervention. The reference task was an informatively cued TS paradigm with nogo stimuli. Performance was measured on reference, near-transfer, and far-transfer tasks by behavioral indicators and event-related potentials (ERPs) before training, 1 month after pretraining, and in case of older adults, 1 year later. The results showed that young adults had better pretraining performance. The reference task was too difficult for older adults to form appropriate representations as indicated by the behavioral data and the lack of P3b components. But after training older adults reached the level of performance of young participants, and accordingly, P3b emerged after both the cue and the target. Training gain was observed also in near-transfer tasks, and partly in far-transfer tasks; working memory and executive functions did not improve, but we found improvement in alerting and orienting networks, and in the execution of variants of TS paradigms. Behavioral and ERP changes remained preserved even after 1 year. These findings suggest that with an appropriate training procedure older adults can reach the level of performance seen in young adults and these changes persist for a long period. The training also affects the unpracticed tasks, but the transfer depends on the extent of task similarities.


2002 ◽  
Vol 13 (01) ◽  
pp. 001-013 ◽  
Author(s):  
James Jerger ◽  
Rebecca Estes

We studied auditory evoked responses to the apparent movement of a burst of noise in the horizontal plane. Event-related potentials (ERPs) were measured in three groups of participants: children in the age range from 9 to 12 years, young adults in the age range from 18 to 34 years, and seniors in the age range from 65 to 80 years. The topographic distribution of grand-averaged ERP activity was substantially greater over the right hemisphere in children and seniors but slightly greater over the left hemisphere in young adults. This finding may be related to age-related differences in the extent to which judgments of sound movement are based on displacement versus velocity information.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 292
Author(s):  
Lina Zhu ◽  
Qian Yu ◽  
Fabian Herold ◽  
Boris Cheval ◽  
Xiaoxiao Dong ◽  
...  

Cardiorespiratory fitness (CRF) is assumed to exert beneficial effects on brain structure and executive control (EC) performance. However, empirical evidence of exercise-induced cognitive enhancement is not conclusive, and the role of CRF in younger adults is not fully understood. Here, we conducted a study in which healthy young adults took part in a moderate aerobic exercise intervention program for 9 weeks (exercise group; n = 48), or control condition of non-aerobic exercise intervention (waitlist control group; n = 72). Before and after the intervention period maximal oxygen uptake (VO2max) as an indicator of CRF, the Flanker task as a measure of EC performance and grey matter volume (GMV), as well as cortical thickness via structural magnetic resonance imaging (MRI), were assessed. Compared to the control group, the CRF (heart rate, p < 0.001; VO2max, p < 0.001) and EC performance (congruent and incongruent reaction time, p = 0.011, p < 0.001) of the exercise group were significantly improved after the 9-week aerobic exercise intervention. Furthermore, GMV changes in the left medial frontal gyrus increased in the exercise group, whereas they were significantly reduced in the control group. Likewise, analysis of cortical morphology revealed that the left lateral occipital cortex (LOC.L) and the left precuneus (PCUN.L) thickness were considerably increased in the exercise group, which was not observed in the control group. The exploration analysis confirmed that CRF improvements are linked to EC improvement and frontal grey matter changes. In summary, our results support the idea that regular endurance exercises are an important determinant for brain health and cognitive performance even in a cohort of younger adults.


2008 ◽  
Vol 2 (3) ◽  
pp. 192-199 ◽  
Author(s):  
Andreana P. Haley ◽  
John Gunstad ◽  
Ronald A. Cohen ◽  
Beth A. Jerskey ◽  
Richard C. Mulligan ◽  
...  

Author(s):  
Vesa Putkinen ◽  
Mari Tervaniemi

Studies conducted during the last three decades have identified numerous differences between musicians and non-musicians in neural correlates of sensory, motor, and higher-order cognitive functions. Research employing event-related potentials/fields has been particularly important in this framework. This chapter reviews the evidence that has emerged from these studies with emphasis on longitudinal studies comparing functional brain development in children taking music lessons and those engaged in non-musical activities. The literature provides empirical and theoretical grounds for concluding that musical training enhances sound encoding skills that are relevant for both music and speech processing. The question whether the benefits of musical training transfer to more distantly related cognitive functions remains controversial, however. Finally, it appears likely that training-induced plasticity alone does not account for the differences in brain function between musicians and non-musicians and, conversely, that predisposing factors also play a role.


Sign in / Sign up

Export Citation Format

Share Document