scholarly journals Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems

Author(s):  
Zihao Man ◽  
Shengquan Che ◽  
Changkun Xie ◽  
Ruiyuan Jiang ◽  
Anze Liang ◽  
...  

The interactions between CO2 flux, an important component of ecosystem carbon flux, and climate change vary significantly among different ecosystems. In this research, the inter-annual variation characteristics of ecosystem respiration (RE), gross ecosystem exchange (GEE), and net ecosystem exchange (NEE) were explored in the temperate grassland (TG) of Xilinhot (2004–2010), the subtropical artificial coniferous forest (SACF) of Qianyanzhou (2003–2010), and the tropical rain forest (TRF) of Xishuangbanna (2003–2010). The main factors of climate change affecting ecosystem CO2 flux were identified by redundancy analysis, and exponential models and temperature indicators were constructed to consider the relationship between climate change and CO2 flux. Every year from 2003 to 2010, RE and GEE first increased and then decreased, and NEE showed no significant change pattern. TG was a carbon source, whereas SACF and TRF were carbon sinks. The influence of air temperature on RE and GEE was greater than that of soil temperature, but the influence of soil moisture on RE and GEE was greater than that of air moisture. Compared with moisture and photosynthetically active radiation, temperature had the greatest impact on CO2 flux and the exponential model had the best fitting effect. In TG and SACF, the average temperature was the most influential factor, and in TRF, the accumulated temperature was the most influential factor. These results provide theoretical support for mitigating and managing climate change and provide references for achieving carbon neutrality.

2008 ◽  
Vol 5 (3) ◽  
pp. 719-729 ◽  
Author(s):  
B. Longdoz ◽  
P. Gross ◽  
A. Granier

Abstract. Eddy covariance (EC) measurements are widely used to estimate the amount of carbon sequestrated by terrestrial biomes. The decision to exclude an EC flux from a database (bad quality records, turbulence regime not adequate, footprint problem,...) becomes an important step in the CO2 flux determination procedure. In this paper an innovative combination of existing assessment tests is used to give a relatively complete evaluation of the net ecosystem exchange measurements. For the 2005 full-leaf season at the Hesse site, the percentage of rejected half-hours is relatively high (59.7%) especially during night-time (68.9%). This result strengthens the importance of the data gap filling method. The data rejection does not lead to a real improvement of the accuracy of the relationship between the CO2 fluxes and the climatic factors especially during the nights. The spatial heterogeneity of the soil respiration (on a site with relatively homogenous vegetation pattern) seems large enough to mask an increase of the goodness of the fit of the ecosystem respiration measurements with a dependence on soil temperature and water content when the tests are used to reject EC data. However, the data rejected present some common characteristics. Their removal lead to an increase in the total amount of CO2 respired (24%) and photosynthesised (16%) during the 2005 full-leaf season. Consequently the application of our combination of multiple quality tests is able improve the inter-annual analysis. The systematic application on the large database like the CarboEurope and FLUXNET appears to be necessary.


2010 ◽  
Vol 7 (1) ◽  
pp. 429-462 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, a simple representation of the soil moisture effect on the ecosystem respiration is implemented into the A-gs version of the Interactions between Soil, Biosphere, and Atmosphere (ISBA) model. It results in an improvement of the modelled CO2 flux over a grassland, in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by the mean of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for practical use in atmospheric or hydrological models. Surface water and energy flux observations as well as gross primary production (GPP) estimates are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and leaf area index (LAI) are confronted with the observed root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


2021 ◽  
Author(s):  
Martin Maddison ◽  
Gert Veber ◽  
Ain Kull

<p>Northern peatlands are important terrestrial carbon (C) stores, but their ability to sequestrate C is at delicate balance affected by management and also by climate change. The climate change causes less snow pack and warmer winters with faster water table drop in spring and drier summers in most boreal areas. Due to those changes natural peatlands may become C source instead of sink.</p><p>This study presents ecosystem respiration (ER) over five-year period and the annual estimates of net ecosystem exchange (NEE) of CO<sub>2</sub> in Umbusi and Laukasoo in Estonia along disturbance gradient from drained to natural ombrotrophic bog. Both study sites locate next to the active cutaway peatlands. There were four CO<sub>2</sub> flux measurements plots with three measurements points at different distance from the drainage ditch (10, 50, 100 and 200 m in Umbusi; 3, 40, 50, 125 m in Laukasoo) to form a water table depth and soil moisture gradient on both study sites. ER was measured using opaque static chamber throughout of the year in period 2012-2016. A vented and thermostated transparent plastic chamber with removable opaque cover was used for CO<sub>2</sub> exchange measurements. NEE measurements occurred biweekly from April to December in 2015, totally were done 648 measurements. NEE was derived from modelling of ER and gross primary production with temperature, photosynthetically active radiation, water level and days of year (as phenological phase) as driving variables.</p><p>Annual mean NEE at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo were 0.37, 0.28, 0.15, 0.08 and 0.44, 0.34, 0.04, 0.21 kg C m<sup>-2</sup> y<sup>-1</sup>, respectively. Although mean NEE was positive for all plots on both sites, there were also negative annual NEE values in some points in undisturbed plots (100 and 200 m from the ditch in Umbusi and 50 and 125 m in Laukasoo).</p><p>Average water level at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo during growing period (from the beginning of May to the end of October) in 2015 were -94, -45, -22, -22 and -124, -33, -21, -22 cm, respectively. Monthly mean air temperature and sum of precipitation were not different from the long-term measurements in studied growing period in 2015 while winter was significantly warmer.</p><p>Modelled ER remained high for cold period because of higher air temperature in 2015. Due to higher respiration rate from non-frozen peat layer in cold season, more CO<sub>2</sub> was released back to atmosphere and annually less C was accumulated. Monthly mean air temperature for cold period was 3.5 ºC warmer than the long-term average.</p>


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Yue Li ◽  
Zhongmei Wan ◽  
Li Sun

Climate change is accelerating its impact on northern ecosystems. Northern peatlands store a considerable amount of C, but their response to climate change remains highly uncertain. In order to explore the feedback of a peatland in the Great Hing’an Mountains to future climate change, we simulated the response of the overall net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary production (GPP) during 2020–2100 under three representative concentration pathways (RCP2.6, RCP6.0, and RCP8.5). Under the RCP2.6 and RCP6.0 scenarios, the carbon sink will increase slightly until 2100. Under the RCP8.5 scenario, the carbon sink will follow a trend of gradual decrease after 2053. These results show that when meteorological factors, especially temperature, reach a certain degree, the carbon source/sink of the peatland ecosystem will be converted. In general, although the peatland will remain a carbon sink until the end of the 21st century, carbon sinks will decrease under the influence of climate change. Our results indicate that in the case of future climate warming, with the growing seasons experiencing overall dryer and warmer environments and changes in vegetation communities, peatland NEE, ER, and GPP will increase and lead to the increase in ecosystem carbon accumulation.


2010 ◽  
Vol 7 (5) ◽  
pp. 1657-1668 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
A.-L. Gibelin ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
...  

Abstract. In this work, the rich dataset acquired at the SMOSREX experimental site is used to enhance the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) model. A simple representation of the soil moisture effect on the ecosystem respiration is implemented in the ISBA-A-gs model. It results in an improvement of the modelled CO2 flux over a grassland in southwestern France. The former temperature-only dependent respiration formulation used in ISBA-A-gs is not able to model the limitation of the respiration under dry conditions. In addition to soil moisture and soil temperature, the only parameter required in this formulation is the ecosystem respiration parameter Re25. It can be estimated by means of eddy covariance measurements of turbulent nighttime CO2 flux (i.e. ecosystem respiration). The resulting correlation between observed and modelled net ecosystem exchange is r2=0.63 with a bias of −2.18 μmol m−2 s−1. It is shown that when CO2 observations are not available, it is possible to use a more complex model, able to represent the heterotrophic respiration and all the components of the autotrophic respiration, to estimate Re25 with similar results. The modelled ecosystem respiration estimates are provided by the Carbon Cycle (CC) version of ISBA (ISBA-CC). ISBA-CC is a version of ISBA able to simulate all the respiration components, whereas ISBA-A-gs uses a single equation for ecosystem respiration. ISBA-A-gs is easier to handle and more convenient than ISBA-CC for the practical use in atmospheric or hydrological models. Surface water and energy flux observations, as well as Gross Primary Production (GPP) estimates, are compared with model outputs. The dependence of GPP to air temperature is investigated. The observed GPP is less sensitive to temperature than the modelled GPP. Finally, the simulations of the ISBA-A-gs model are analysed over a seven year period (2001–2007). Modelled soil moisture and Leaf Area Index (LAI) are confronted with the observed surface and root-zone soil moisture content (m3 m−3), and with LAI estimates derived from surface reflectance measurements.


2008 ◽  
Vol 31 (4) ◽  
pp. 473-483 ◽  
Author(s):  
MOLLY A. CAVALERI ◽  
STEVEN F. OBERBAUER ◽  
MICHAEL G. RYAN

2018 ◽  
Vol 40 (2) ◽  
pp. 167 ◽  
Author(s):  
Guozheng Hu ◽  
Zhiqiang Wan ◽  
Yali Chen ◽  
Luomeng Chao ◽  
Qingzhu Gao ◽  
...  

A randomised block experiment was conducted to study the response of plant community characteristics (biomass, density and diversity) and ecosystem carbon exchange processes to warming, increased precipitation and their combination on Stipa steppe in Inner Mongolia. Increased precipitation enhanced the effect that warming had in promoting community diversity and biomass. Increased precipitation directly increased net ecosystem exchange and gross ecosystem productivity, although ecosystem respiration and soil respiration also increased. However, warming did not have a significant effect on net ecosystem exchange and gross ecosystem productivity, whereas ecosystem respiration and soil respiration were significantly decreased by warming. All carbon flux processes had a significantly positive correlation with soil moisture. However, the carbon sequestration processes, gross ecosystem productivity and net ecosystem exchange, were significantly negatively correlated with temperature, contrary to carbon emission processes, soil respiration and ecosystem respiration. Results suggest that Stipa steppe may be benefited by future climate change, as the predicted precipitation is increasing with warming in Inner Mongolia. However, it is hard to predict the feedback of Stipa steppe to climate, because of the uncertainty in magnitude and temporal dynamics of climate change. To reveal the mechanism of the observed responses, further studies are suggested in this region on the effects of altered climate variables on plant species interactions, soil organic carbon composition, soil extracellular enzyme activity, microbial biomass and microbial respiration.


Sign in / Sign up

Export Citation Format

Share Document