scholarly journals Livelihoods, Technological Constraints, and Low-Carbon Agricultural Technology Preferences of Farmers: Analytical Frameworks of Technology Adoption and Farmer Livelihoods

Author(s):  
Dandan Zhao ◽  
Hong Zhou

In the context of achieving carbon neutrality, it is scientifically important to quantitatively explore the relationships among livelihoods, technological property constraints, and the selection of low-carbon technologies by farmers to promote agricultural modernization and carbon neutrality in the agricultural sector of China. Based on the scientific classifications of farmer capital and low-carbon agricultural technologies, a farmer technology selection theory model considering capital constraints was developed in this study. Microcosmic survey data were collected from farmers in the Jiangsu province for empirical testing and analyses. A total of four low-carbon technologies related to fertilizer usage and three types of farmers’ livelihoods and their relationships were examined by using a logistic model. The results showed the existence of a significant coupling relationship between the intrinsic decision mechanism involved in selecting low-carbon agricultural technology and the properties of low-carbon agricultural technology for different types of farmers. Significant differences exist in the selection of different low-carbon technologies among large-scale farmers, mid-level part-time farmers, and low-level (generally small) part-time farmers. (1) When selecting technology, large-scale farmers are more inclined to accept capital-intensive, low-carbon technologies, such as new varieties, straw recycling, soil testing, and formulated fertilization. Mid-level part-time farmers are more inclined to accept capital intensive, labor saving, or low risk low-carbon agricultural technologies. In contrast, low-level part-time farmers are inclined to accept labor intensive technologies to reduce capital constraints and agricultural risks. (2) Large-scale farmers and low-level part-time farmers are influenced by household and plot characteristics, while mid-level part-time farmers are more influenced by plot characteristics. (3) Households with capital constraints created by differentiated livelihoods face challenges adopting capital-intensive low-carbon agricultural technologies, such as straw recycling, new varieties, soil testing, and formulated fertilization. However, farmers with stronger constraints in the areas of land and labor are more inclined to accept labor-saving technologies, such as soil testing and formulated fertilization technology. Moreover, farmers with stronger risk preferences tend to accept high-risk technologies, such as new technologies like straw recycling. The results of this study can provide a scientific basis for formulating carbon emission reduction policies and low-carbon technology policies for the agricultural sector.

Author(s):  
Chunzeng Fan ◽  
Taoyuan Wei

Purpose Constructing a low-carbon agriculture (LCA) park is considered an effective means to reduce greenhouse gas (GHG) emissions in developing countries. This study aims to explore the effectiveness of integrated low-carbon agricultural technologies based on evidence from a pilot LCA experiment in Shanghai, China, from 2008 to 2011. Design/methodology/approach Integrated low-carbon technologies in an agricultural park were adopted to reduce GHG emissions. Reduced emissions and net economic benefits were calculated by comparing emissions before and after the implementation of the experiment. Findings Results show that the low-carbon agricultural park experiment markedly reduced GHG emissions. This outcome can be attributed to the integrated technologies adopted in the experiment, including the reuse and recycle of resources, control of environmental pollution and GHG emissions and improvement of economic efficiency and social benefit. All the technologies adopted are already available and mature, thus indicating the great potential of LCA to reduce GHG emissions despite the lack of advanced technologies. However, supporting policies may be necessary to motivate private interests in LCA because of the considerable starting investments. Originality/value Previous macro-level and policy studies on LCA are based on knowledge from experimental studies, which typically specify environmental conditions to explore solely the effects of one low-carbon technology. Practically, integrating several low-carbon technologies in one experiment may be more effective, particularly for extensive agriculture, in developing countries. The effectiveness of integrated technologies is insufficiently discussed in the literature. Therefore, this study explores how effective integrated feasible LCA technologies can be in terms of both emission reduction and economic benefits based on the data obtained from an experiment in Shanghai, China.


2014 ◽  
Vol 587-589 ◽  
pp. 42-47
Author(s):  
Yue Xia Lv ◽  
Gui Huan Yan ◽  
Chong Qing Xu ◽  
Gui Xiang Kong

Due to rapid urbanization process and fast urbanization rate, China will consume a large amount of embodied energy accompanied with carbon emissions in the next decades. As the basic society unit and the city epitome, sustainability development of the community is essential for construction of sustainable society and acceleration of prosperous economy. In the present paper, low carbon technologies, strategies and energy-related lifestyles concerned with sustainability development of the community have been briefly introduced. Typical practices, characteristics and measures of some sustainable communities in China have been reviewed. Existing evaluation tools and indicators at community level have been analyzed for the evaluation, implementation and standardization of sustainable communities. In the end, some suggestions have been proposed to promote the large-scale demonstration of sustainable communities in the future.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jinxi Yang ◽  
Christian Azar ◽  
Kristian Lindgren

Transitioning to a low-carbon electricity system requires investments on a very large scale. These investments require access to capital, but that access can be challenging to obtain. Most energy system models do not (explicitly) model investment financing and thereby fail to take this challenge into account. In this study, we develop an agent-based model, where we explicitly include power sector investment financing. We find that different levels of financing constraints and capital availabilities noticeably impact companies' investment choices and economic performances and that this, in turn, impacts the development of the electricity capacity mix and the pace at which CO2 emissions are reduced. Limited access to capital can delay investments in low-carbon technologies. However, if the financing constraint is too relaxed, the risk of going bankrupt can increase. In general, companies that anticipate carbon prices too high above or too far below the actual development, along with those that use a low hurdle rate, are the ones that are more likely to go bankrupt. Emissions are cut more rapidly when the carbon tax grows faster, but there is overall a greater tendency for agents to go bankrupt when the tax grows faster. Our energy transition model may be particularly useful in the context of the least financially developed markets.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Muluken G. Wordofa ◽  
Jemal Y. Hassen ◽  
Getachew S. Endris ◽  
Chanyalew S. Aweke ◽  
Dereje K. Moges ◽  
...  

Abstract Background Adoption of improved agricultural technologies remains to be a promising strategy to achieve food security and poverty reduction in many developing countries. However, there are limited rigorous impact evaluations on the contributions of such technologies on household welfare. This paper investigates the impact of improved agricultural technology use on farm household income in eastern Ethiopia. Methods Primary data for the study was obtained from a random sample of 248 rural households, 119 of which are improved technology users and the rest are non-users. The research employed the Propensity Score Matching (PSM) procedure to establish the causal relationship between adoption of improved crop and livestock technologies and changes in farm income. Results Results from the econometric analysis show that households using improved agricultural technologies had, on average, 23,031.28 Birr (Birr is the official currency of Ethiopia. The exchange rate according to the National Bank of Ethiopia (NBE) was 1 USD = 27.6017 Birr on 04 October 2018.) higher annual farm income compared to those households not using such technologies. Our findings highlight the importance of promoting multiple and complementary agricultural technologies among rural smallholders. Conclusions We suggest that rural technology generation, dissemination and adoption interventions be strengthened. Moreover, the linkage among research, extension, universities and farmers needs to be enhanced through facilitating a multistakeholders innovation platforms.


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


2015 ◽  
Vol 28 (17) ◽  
pp. 6743-6762 ◽  
Author(s):  
Catherine M. Naud ◽  
Derek J. Posselt ◽  
Susan C. van den Heever

Abstract The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the postfrontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low-level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime postfrontal precipitation.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


2012 ◽  
Vol 222 ◽  
pp. R20-R37 ◽  
Author(s):  
Shirley Dex ◽  
Erzsébet Bukodi

The effects of working part time on job downgrading and upgrading are examined over the life course of British women born in 1958. We use longitudinal data with complete work histories from a large-scale nationally representative cohort study. Occupations were ranked by their hourly average earnings. Analyses show a strong link between full-time/part-time transitions and downward and upward occupational mobility over the course of up to thirty years of employment. Probabilities of occupational mobility were affected by women's personal traits, occupational characteristics and demand-side factors. Downward mobility on moving from full-time to part-time work was more likely for women at the top levels of the occupational hierarchy working in male-dominated or mixed occupations and less likely in higher occupations with more part-time jobs available.


Sign in / Sign up

Export Citation Format

Share Document