scholarly journals Landslide Susceptibility Mapping and Assessment Using Geospatial Platforms and Weights of Evidence (WoE) Method in the Indian Himalayan Region: Recent Developments, Gaps, and Future Directions

2021 ◽  
Vol 10 (3) ◽  
pp. 114
Author(s):  
Amit Kumar Batar ◽  
Teiji Watanabe

The Himalayan region and hilly areas face severe challenges due to landslide occurrences during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception. However, the landslide related database and research are still inadequate in these landslide-prone areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide susceptibility map using weights of evidence (WoE) method in the Geographical Information System (GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent developments, gaps, and future directions related to landslide inventory, susceptibility mapping, and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013. Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the previous study. Then, the WoE method was applied to assign the weights for each class of causative factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map was divided into five susceptibility classes (very high, high, medium, low, and very low classes). Later, the validation of the landslide susceptibility map was checked against randomly selected landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and barren land. The results show that medium to very high landslide susceptibilities areas are in the upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07). The results also show that landslide susceptibility is high in high relative relief areas and shallow soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this landslide susceptibility map could help the local governments in landslide hazard mitigation, land use planning, and landscape protection.

2021 ◽  
Vol 16 (4) ◽  
pp. 521-528
Author(s):  
Nguyen Trung Kien ◽  
The Viet Tran ◽  
Vy Thi Hong Lien ◽  
Pham Le Hoang Linh ◽  
Nguyen Quoc Thanh ◽  
...  

Tinh Tuc town, Cao Bang province, Vietnam is prone to landslides due to the complexity of its climatic, geological, and geomorphological conditions. In this study, in order to produce a landslide susceptibility map, the modified analytical hierarchy process and landslide susceptibility analysis methods were used together with the layers, including: landslide inventory, slope, weathering crust, water storage, geology, land use, and distance from the road. In the study area, 98% of landslides occurred in highly or completely weathered units. Geology, land use, and water storage data layers were found to be important factors that are closely related with the occurrence of landslides. Although the weight of the “distance from the road” factor has a low value, the weight of layer “<100 m” has a high value. Therefore, the landslide susceptibility index very high is concentrated along the roads. For the validation of the predicted result, the landslide susceptibility map was compared with the landslide inventory map containing 47 landslides. The outcome shows that about 90% of these landslides fall into very high susceptibility zones.


2017 ◽  
Vol 4 (2) ◽  
pp. 157 ◽  
Author(s):  
Andang Suryana Soma ◽  
Tetsuya Kubota

The study aims to develop and apply land use change (LUC) performance on landslide susceptibility map using frequency ratio (FR), and Logistic regression (LR) method in a geographic information system. In the study area, Upper Ujung-loe Watersheds area of Indonesia, landslides were detected using field survey and air photography from time series data image of Google Earth Pro from 2012 to 2016 and LUC from 2004 to 2011. Landslide susceptibility map (LSM) was constructed using FR and LR with nine causative factors. The result indicated that LUC affect the production of LSM. Validation of landslide susceptibility was carried out in this study at both with and without LUC causative factors. First, performances of each landslide model were tested using AUC curve for success and predictive rate. The highest value of predictive rate at with LUC in both FR and LR method were 83.4 % and 85.2 %, respectively. In the second stage, the ratio of landslides falling on high to a very high class of susceptibility was obtained, which indicates the level of accuracy of the method.LR method with LUC had the highest accuracy of 80.24 %. Taken together, the results suggested that changing the vegetation to another landscape causes slopes unstable and increases probability to landslide occurrence.


Author(s):  
Amol Sharma ◽  
Chander Prakash

Landslide susceptibility mapping has proved to be crucial tool for effective disaster management and planning strategies in mountainous regions. The present study is perused to investigate the changes in the landslide susceptibility of the Mandi district of Himachal Pradesh due to road construction. For this purpose, an inventory of 1723 landslides was generated from various sources. Out of these, 1199 (70%) landslides were taken in the training dataset to be used for modelling and prediction purposes, while 524 (30%) landslides were taken in the testing dataset to be used for validation purposes. Eleven landslide causative factors were selected from numerous hydrological, geological and topographical factors and were analyzed for landslide susceptibility mapping using three bivariate statistical models, namely; Frequency Ratio (FR), Certainty Factor (CF) and Shanon Entropy (SE). Two sets of LSM maps i.e. landslide susceptibility map natural (LSMN) and landslide susceptibility map road (LSMR), were generated using the above mentioned bivariate models and were divided into five landslide susceptibility classes namely; very low, low, medium, high and very high. These maps were analyzed for accuracy of prediction and validation using receiver operating characteristic (ROC) curves and area under curve (AUC) technique which indicated that all three bivariate statistical models performed satisfactorily with the SE model had the highest prediction and validation accuracy of 83-86%. Further analysis LSM maps confirmed that the percentage area in high and very high classes of land-slide susceptibility increased by 2.67-4.17% due to road construction activities in the study area.


PERENNIAL ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 42
Author(s):  
Nurul Fadilah ◽  
Usman Arsyad ◽  
Andang Suryana Soma

Landslide is a movement of soil with slope direction and moves it on a slide. This study aimed to predict the landslide susceptibility map by using a frequency ratio. It used seven causative factors, such as slope, curvature, land use, lithology, distance to a river, distance to lineament, and rainfall. The result showed the AUC of success rate and predicted rate produced high accuracy with 0.907 and 0.904, respectively.  According to the frequency ratio, the slope was the most influential than the other causative factors with 7.15. The landslide susceptibility divided into five classes, i.e. very low, low, moderate, high, and very high.  Landslide susceptibility with very high and high was 19%.  Moreover, classes susceptibility of very low, low, and moderate were 71%. The presentation of very high and high susceptibility is low, but it was located on an upper stream, and it will be a danger if to the downstream. 


2018 ◽  
Vol 149 ◽  
pp. 02094
Author(s):  
A I JEMMAH ◽  
L AIT BRAHIM

Taounate region is known by a high density of mass movements which cause several human and economic losses. The goal of this paper is to assess the landslide susceptibility of Taounate using the Weight of Evidence method (WofE) and the Logistic Regression method (LR). Seven conditioning factors were used in this study: lithology, fault, drainage, slope, elevation, exposure and land use. Over the years, this site and its surroundings have experienced repeated landslides. For this reason, landslide susceptibility mapping is mandatory for risk prevention and land-use management. In this study, we have focused on recent large-scale mass movements. Finally, the ROC curves were established to evaluate the degree of fit of the model and to choose the best landslide susceptibility zonation. A total mass movements location were detected; 50% were randomly selected as input data for the entire process using the Spatial Data Model (SDM) and the remaining locations were used for validation purposes. The obtained WofE’s landslide susceptibility map shows that high to very high susceptibility zones contain 62% of the total of inventoried landslides, while the same zones contain only 47% of landslides in the map obtained by the LR method. This landslide susceptibility map obtained is a major contribution to various urban and regional development plans under the Taounate Region National Development Program.


2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


2020 ◽  
Vol 10 (18) ◽  
pp. 6335 ◽  
Author(s):  
Kamila Pawluszek-Filipiak ◽  
Natalia Oreńczak ◽  
Marta Pasternak

To mitigate the negative effects of landslide occurrence, there is a need for effective landslide susceptibility mapping (LSM). The fundamental source for LSM is landslide inventory. Unfortunately, there are still areas where landslide inventories are not generated due to financial or reachability constraints. Considering this led to the following research question: can we model landslide susceptibility in an area for which landslide inventory is not available but where such is available for surrounding areas? To answer this question, we performed cross-modeling by using various strategies for landslide susceptibility. Namely, landslide susceptibility was cross-modeled by using two adjacent regions (“Łososina” and “Gródek”) separated by the Rożnów Lake and Dunajec River. Thus, 46% and 54% of the total detected landslides were used for the LSM in “Łososina” and “Gródek” model, respectively. Various topographical, geological, hydrological and environmental landslide-conditioning factors (LCFs) were created. These LCFs were generated on the basis of the Digital Elevation Model (DEM), Sentinel-2A data, a digitized geological and soil suitability map, precipitation, the road network and the Różnów lake shapefile. For LSM, we applied the Frequency Ratio (FR) and Landslide Susceptibility Index (LSI) methods. Five zones showing various landslide susceptibilities were generated via Natural Jenks. The Seed Cell Area Index (SCAI) and Relative Landslide Density Index were used for model validation. Even when the SCAI indicated extremely high values for “very low” susceptibility classes and very small values for “very high” susceptibility classes in the training and validation areas, the accuracy of the LSM in the validation areas was significantly lower. In the “Łososina” model, 90% and 57% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. In the “Gródek” model, 86% and 46% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. Moreover, the comparison between these two models was performed. Discrepancies between these two models exist in the areas of critical geological structures (thrust and fault proximity), and the reliability for such susceptibility zones can be low (2–3 susceptibility zone difference). However, such areas cover only 11% of the analyzed area; thus, we can conclude that in remaining regions (89%), LSM generated by the inventory for the surrounding area can be useful. Therefore, the low reliability of such a map in areas of critical geological structures should be borne in mind.


2012 ◽  
Vol 225 ◽  
pp. 442-447 ◽  
Author(s):  
Biswajeet Pradhan ◽  
Zulkiflee Abd. Latif ◽  
Siti Nur Afiqah Aman

The escalating number of occurrences of natural hazards such as landslides has raised a great interest among the geoscientists. Due to the extremely high number of point’s returns, airborne LiDAR permits the formation of more accurate DEM compared to other space borne and airborne remote sensing techniques. This study aims to assess the capability of LiDAR derived parameters in landslide susceptibility mapping. Due to frequent occurrence of landslides, Ulu Klang in Selangor state in Malaysia has been considered as application site. A high resolution of airborne LiDAR DEM was constructed to produce topographic attributes such as slope, curvature and aspect. These data were utilized to derive secondary deliverables of landslide parameters such as topographic wetness index (TWI), surface area ratio (SAR) and stream power index (SPI). A probabilistic based frequency ratio model was applied to establish the spatial relationship between the landslide locations and each landslide related factors. Subsequently, factor ratings were summed up to yield Landslide Susceptibility Index (LSI) and finally a landslide susceptibility map was prepared. To test the model performance, receiver operating characteristics (ROC) curve was carried out together with area under curve (AUC) analysis. The produced landslide susceptibility map demonstrated that high resolution airborne LiDAR data has huge potential in landslide susceptibility mapping.


Author(s):  
Desire Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

As in other hilly and mountainous regions of the world, the hillslopes of Bujumbura are prone to landslides. In this area, landslides impact human lives and infrastructures. Despite the high landslide-induced damages, slope instabilities are less investigated. The aim of this research is to assess the landslide susceptibility using a probabilistic/statistical data modeling approach for predicting the initiation of future landslides. A spatial landslide inventory with their physical characteristics through interpretation of high-resolution optic imageries/aerial photos and intensive fieldwork are carried out. Base on in-depth field knowledge and green literature, let’s select potential landslide conditioning factors. A landslide inventory map with 568 landslides is produced. Out of the total of 568 landslide sites, 50 % of the data taken before the 2000s is used for training and the remaining 50 % (post-2000 events) were used for validation purposes. A landslide susceptibility map with an efficiency of 76 % to predict future slope failures is generated. The main landslides controlling factors in ascendant order are the density of drainage networks, the land use/cover, the lithology, the fault density, the slope angle, the curvature, the elevation, and the slope aspect. The causes of landslides support former regional studies which state that in the region, landslides are related to the geology with the high rapid weathering process in tropical environments, topography, and geodynamics. The susceptibility map will be a powerful decision-making tool for drawing up appropriate development plans in the hillslopes of Bujumbura with high demographic exposure. Such an approach will make it possible to mitigate the socio-economic impacts due to these land instabilities


Sign in / Sign up

Export Citation Format

Share Document