scholarly journals Ecosystem-Dependent Responses of Vegetation Coverage on the Tibetan Plateau to Climate Factors and Their Lag Periods

2021 ◽  
Vol 10 (6) ◽  
pp. 394
Author(s):  
Shuohao Cai ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Da Guo

The spatiotemporal variation characteristics of the Normalized Difference Vegetation Index (NDVI) and its climate response patterns are of significance in deepening our understanding of regional vegetation and climate change. The response of vegetation to climate factors varies spatially and may have lag periods. In this paper, we studied the spatiotemporal responses of vegetation to climatic factors on an ecosystem-dependent scale using GIMMS NDVI3g data and climatic parameters. Pure pixels with a single vegetation type were firstly extracted to reduce the influence of mixed vegetation types. Then, a lag correlation analysis was used to explore the lag effects of climatic parameters affecting NDVI. Finally, the stepwise regression method was adopted to calculate the regression equation for NDVI and meteorological data with the consideration of effect lag times. The results show that precipitation has significant lag effects on vegetation. Temperature is the main climatic factor that affects most vegetation types at the start of growing season. At the end of growing season, the temperate desert, temperate steppe, and temperate desert steppe are greatly affected by precipitation. Moreover, the alpine steppe, alpine desert, alpine meadow, and alpine sparse vegetation are greatly affected by temperature. The needleleaf forest, subalpine scrub, and broadleaf evergreen forest are sensitive to sunshine percentage during almost the whole growing season. These findings could contribute to a better understanding of the drivers and mechanisms of vegetation degradation on the Tibetan Plateau.

2017 ◽  
Vol 419 (1-2) ◽  
pp. 349-361 ◽  
Author(s):  
Miaojun Ma ◽  
James W. Dalling ◽  
Zhen Ma ◽  
Xianhui Zhou

Oryx ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Xuchang Liang ◽  
Aili Kang ◽  
Nathalie Pettorelli

AbstractWe tested a series of hypotheses on drivers of habitat selection by the Vulnerable wild yak Bos mutus, combining distribution-wide sighting data with species distribution modelling approaches. The results indicate that climatic conditions are of paramount importance in shaping the wild yak's distribution on the Tibetan Plateau. Habitat selection patterns were seasonal, with yaks appearing to select areas closer to villages during the vegetation-growing season. Unexpectedly, our index of forage quantity had a limited effect in determining the distribution of the species. Overall, our results suggest that expected changes in climate for this region could have a significant impact on habitat availability for wild yaks, and we call for more attention to be focused on the unique wildlife in this ecosystem.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2605 ◽  
Author(s):  
Huamin Zhang ◽  
Mingjun Ding ◽  
Lanhui Li ◽  
Linshan Liu

Based on daily observation records at 277 meteorological stations on the Tibetan Plateau (TP) and its surrounding areas during 1970–2017, drought evolution was investigated using the Standardized Precipitation Evapotranspiration Index (SPEI). First, the spatiotemporal changes in the growing season of SPEI (SPEIgs) were re-examined using the Mann–Kendall and Sen’s slope approach—the piecewise linear regression and intensity analysis approach. Then, the persistence of the SPEIgs trend was predicted by the Hurst exponent. The results showed that the SPEIgs on the TP exhibited a significant increasing trend at the rate of 0.10 decade−1 (p < 0.05) and that there is no significant trend shift in SPEIgs (p = 0.37), indicating that the TP tended to undergo continuous wetting during 1970–2017. In contrast, the areas surrounding the TP underwent a significant trend shift from an increase to a decrease in SPEIgs around 1984 (p < 0.05), resulting in a weak decreasing trend overall. Spatially, most of the stations on the TP were characterized by an increasing trend in SPEIgs, except those on the Eastern fringe of TP. The rate of drought/wet changes was relatively fast during the 1970s and 1980s, and gradually slowed afterward on the TP. Finally, the consistent increasing trend and decreasing trend of SPEIgs on the TP and the area East of the TP were predicted to continue in the future, respectively. Our results highlight that the TP experienced a significant continuous wetting trend in the growing season during 1970–2017, and this trend is likely to continue.


2017 ◽  
Vol 10 (11) ◽  
pp. 1098-1117 ◽  
Author(s):  
Jiaqiang Du ◽  
Ping He ◽  
Shifeng Fang ◽  
Weiling Liu ◽  
Xinjie Yuan ◽  
...  

2015 ◽  
Vol 112 (30) ◽  
pp. 9299-9304 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Su-Jong Jeong ◽  
Liming Zhou ◽  
Zhenzhong Zeng ◽  
...  

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


2008 ◽  
Vol 50 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Qi-Wu Hu ◽  
Qin Wu ◽  
Guang-Min Cao ◽  
Dong Li ◽  
Rui-Jun Long ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 084694 ◽  
Author(s):  
Siyu Chen ◽  
Tiangang Liang ◽  
Hongjie Xie ◽  
Qisheng Feng ◽  
Xiaodong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document