scholarly journals Understanding habitat selection of the Vulnerable wild yak Bos mutus on the Tibetan Plateau

Oryx ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Xuchang Liang ◽  
Aili Kang ◽  
Nathalie Pettorelli

AbstractWe tested a series of hypotheses on drivers of habitat selection by the Vulnerable wild yak Bos mutus, combining distribution-wide sighting data with species distribution modelling approaches. The results indicate that climatic conditions are of paramount importance in shaping the wild yak's distribution on the Tibetan Plateau. Habitat selection patterns were seasonal, with yaks appearing to select areas closer to villages during the vegetation-growing season. Unexpectedly, our index of forage quantity had a limited effect in determining the distribution of the species. Overall, our results suggest that expected changes in climate for this region could have a significant impact on habitat availability for wild yaks, and we call for more attention to be focused on the unique wildlife in this ecosystem.

2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jesse N. Popp ◽  
David N. C. McGeachy ◽  
Josef Hamr

Seasonal habitat selection by the reintroduced Burwash elk population, approximately 30 km south of Sudbury, Ontario, has been analysed in order to assist in the development of future management. Twenty-five adult females were radio-collared and tracked 1–3 times a week for 3 years. The most prominent patterns included selection of intolerant hardwood forests (trembling aspen, white birch, and balsam poplar) during all seasons, while Great Lakes-St. Lawrence pines (white and red pine dominated stands) were used less than expected based on availability for all seasons. The selection patterns are likely associated with seasonal climatic conditions and forage preferences. Because the selection behaviours displayed here varied greatly from other elk habitat studies, it is suggested that managers consider the importance of population-specific habitat studies before developing related strategies.


2021 ◽  
Vol 181 (4) ◽  
pp. 83-92
Author(s):  
I. A. Zveinek ◽  
O. N. Kovaleva

Background. The length of the growing season is a limiting factor in many regions with unstable climatic conditions. The development of ultra-early barley donors makes it possible to accelerate the breeding process aimed at producing commercial cultivars adapted to cultivation area requirements.Materials and methods. The donors Kibel, Kibel uluchshenny, Kibtsel and Kibkor were obtained through individual selection of barley forms combining earliness and productivity from the hybrid combination Belogorsky × k-15881. The experiments were carried out according to the approved guidelines. Yield components were used to calculate the index of productivity for the donors versus the reference cv. ‘Belogorsky’.Results and conclusions. Earliness is controlled in the donors by three recessive genes. The donors’ period from emergence to heading was 7–9 days shorter than that of the reference cv. ‘Belogorsky’, with a low norm of reaction, which attested to their high adaptability. The resulting barley forms were highly resistant to lodging. The donor Kibel uluchshenny in all spike yield components did not differ from the reference. The other donors were close to the reference in spike length and 1000 seed weight. The example of Kibel uluchshenny was used to demonstrate the possibility of producing barley forms combining high earliness and good productivity. The developed donors may prove useful in the breeding for earliness in the areas where the length of the growing season is a limiting factor. 


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2605 ◽  
Author(s):  
Huamin Zhang ◽  
Mingjun Ding ◽  
Lanhui Li ◽  
Linshan Liu

Based on daily observation records at 277 meteorological stations on the Tibetan Plateau (TP) and its surrounding areas during 1970–2017, drought evolution was investigated using the Standardized Precipitation Evapotranspiration Index (SPEI). First, the spatiotemporal changes in the growing season of SPEI (SPEIgs) were re-examined using the Mann–Kendall and Sen’s slope approach—the piecewise linear regression and intensity analysis approach. Then, the persistence of the SPEIgs trend was predicted by the Hurst exponent. The results showed that the SPEIgs on the TP exhibited a significant increasing trend at the rate of 0.10 decade−1 (p < 0.05) and that there is no significant trend shift in SPEIgs (p = 0.37), indicating that the TP tended to undergo continuous wetting during 1970–2017. In contrast, the areas surrounding the TP underwent a significant trend shift from an increase to a decrease in SPEIgs around 1984 (p < 0.05), resulting in a weak decreasing trend overall. Spatially, most of the stations on the TP were characterized by an increasing trend in SPEIgs, except those on the Eastern fringe of TP. The rate of drought/wet changes was relatively fast during the 1970s and 1980s, and gradually slowed afterward on the TP. Finally, the consistent increasing trend and decreasing trend of SPEIgs on the TP and the area East of the TP were predicted to continue in the future, respectively. Our results highlight that the TP experienced a significant continuous wetting trend in the growing season during 1970–2017, and this trend is likely to continue.


2017 ◽  
Vol 10 (11) ◽  
pp. 1098-1117 ◽  
Author(s):  
Jiaqiang Du ◽  
Ping He ◽  
Shifeng Fang ◽  
Weiling Liu ◽  
Xinjie Yuan ◽  
...  

2015 ◽  
Vol 112 (30) ◽  
pp. 9299-9304 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Su-Jong Jeong ◽  
Liming Zhou ◽  
Zhenzhong Zeng ◽  
...  

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


2008 ◽  
Vol 50 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Qi-Wu Hu ◽  
Qin Wu ◽  
Guang-Min Cao ◽  
Dong Li ◽  
Rui-Jun Long ◽  
...  

2021 ◽  
Vol 71 ◽  
pp. 799-811
Author(s):  
Haithem El-Farhati ◽  
Mourad Khaldi ◽  
Alexis Ribas ◽  
Mohamed Wassim Hizem ◽  
Saïd Nouira ◽  
...  

Abstract Two species of hedgehogs are known to occur in northern part of Africa: the Algerian hedgehog Atelerix algirus and the Ethiopian hedgehog Paraechinus aethiopicus. Within each species several subspecies were described based on morphometrical data and pelage coloration, but all these subspecies have enigmatic and unclear definitions. We investigated the phylogeographical history and taxonomy of these two species based on mitochondrial DNA data covering the entire geographical distribution of A. algirus and the North African distribution of P. aethiopicus. We also used climatic niche modelling to make inferences about their evolutionary history. Low genetic diversity was recovered in both species. While no phylogeographic pattern was found in P. aethiopicus, two haplogroups were identified within A. algirus. This could be explained by the fact that continuous high or moderate climatic suitability occurred throughout most of the Saharan desert since the LGM (Last Glacial Maximum) for the first species, while during the LGM there were several disconnected areas of high climatic suitability for A. algirus: one in South-West Morocco, one at the coastal Moroccan-Algerian border and one in Tunisia-coastal Libya. Our genetic results confirm that A. algirus recently colonized Spain, Balearic and Canary Islands, and that this colonization was probably mediated by humans. Suitable climatic conditions occurred throughout most of the Southern and Eastern Iberian Peninsula during the last 6,000 years which could have favored the spatial expansion of the Algerian hedgehog after its arrival in Europe. According to our molecular results subspecific recognition within North Africa is unwarranted for both species.


Sign in / Sign up

Export Citation Format

Share Document