scholarly journals Urban Hotspot Area Detection Using Nearest-Neighborhood-Related Quality Clustering on Taxi Trajectory Data

2021 ◽  
Vol 10 (7) ◽  
pp. 473
Author(s):  
Qingying Yu ◽  
Chuanming Chen ◽  
Liping Sun ◽  
Xiaoyao Zheng

Urban hotspot area detection is an important issue that needs to be explored for urban planning and traffic management. It is of great significance to mine hotspots from taxi trajectory data, which reflect residents’ travel characteristics and the operational status of urban traffic. The existing clustering methods mainly concentrate on the number of objects contained in an area within a specified size, neglecting the impact of the local density and the tightness between objects. Hence, a novel algorithm is proposed for detecting urban hotspots from taxi trajectory data based on nearest neighborhood-related quality clustering techniques. The proposed spatial clustering algorithm not only considers the maximum clustering in a limited range but also considers the relationship between each cluster center and its nearest neighborhood, effectively addressing the clustering issue of unevenly distributed datasets. As a result, the proposed algorithm obtains high-quality clustering results. The visual representation and simulated experimental results on a real-life cab trajectory dataset show that the proposed algorithm is suitable for inferring urban hotspot areas, and that it obtains better accuracy than traditional density-based methods.

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 69481-69491 ◽  
Author(s):  
Zhenhua Chen ◽  
Yongjian Yang ◽  
Liping Huang ◽  
En Wang ◽  
Dawei Li

Author(s):  
SANGHAMITRA BANDYOPADHYAY ◽  
UJJWAL MAULIK ◽  
MALAY KUMAR PAKHIRA

An efficient partitional clustering technique, called SAKM-clustering, that integrates the power of simulated annealing for obtaining minimum energy configuration, and the searching capability of K-means algorithm is proposed in this article. The clustering methodology is used to search for appropriate clusters in multidimensional feature space such that a similarity metric of the resulting clusters is optimized. Data points are redistributed among the clusters probabilistically, so that points that are farther away from the cluster center have higher probabilities of migrating to other clusters than those which are closer to it. The superiority of the SAKM-clustering algorithm over the widely used K-means algorithm is extensively demonstrated for artificial and real life data sets.


Author(s):  
P. X. Zhao ◽  
S. M. Zhao

In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.


Author(s):  
H. Xiong ◽  
L. Chen ◽  
Z. Gui

With more and more vehicles equipped with Global Positioning System (GPS), access to large-scale taxi trajectory data has become increasingly easy. Taxis are valuable sensors and information associated with taxi trajectory can provide unprecedented insight into many aspects of city life. But analysing these data presents many challenges. Visualization of taxi data is an efficient way to represent its distributions and structures and reveal hidden patterns in the data. However, Most of the existing visualization systems have some shortcomings. On the one hand, the passenger loading status and speed information cannot be expressed. On the other hand, mono-visualization form limits the information presentation. In view of these problems, this paper designs and implements a visualization system in which we use colour and shape to indicate passenger loading status and speed information and integrate various forms of taxi visualization. The main work as follows: 1. Pre-processing and storing the taxi data into MongoDB database. 2. Visualization of hotspots for taxi pickup points. Through DBSCAN clustering algorithm, we cluster the extracted taxi passenger’s pickup locations to produce passenger hotspots. 3. Visualizing the dynamic of taxi moving trajectory using interactive animation. We use a thinning algorithm to reduce the amount of data and design a preloading strategyto load the data smoothly. Colour and shape are used to visualize the taxi trajectory data.


Author(s):  
P. X. Zhao ◽  
S. M. Zhao

In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.


2014 ◽  
Vol 998-999 ◽  
pp. 873-877
Author(s):  
Zhen Bo Wang ◽  
Bao Zhi Qiu

To reduce the impact of irrelevant attributes on clustering results, and improve the importance of relevant attributes to clustering, this paper proposes fuzzy C-means clustering algorithm based on coefficient of variation (CV-FCM). In the algorithm, coefficient of variation is used to weigh attributes so as to assign different weights to each attribute in the data set, and the magnitude of weight is used to express the importance of different attributes to clusters. In addition, for the characteristic of fuzzy C-means clustering algorithm that it is susceptible to initial cluster center value, the method for the selection of initial cluster center based on maximum distance is introduced on the basis of weighted coefficient of variation. The result of the experiment based on real data sets shows that this algorithm can select cluster center effectively, with the clustering result superior to general fuzzy C-means clustering algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zhihan Liu ◽  
Yi Jia ◽  
Xiaolu Zhu

Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.


2018 ◽  
Vol 176 ◽  
pp. 01019
Author(s):  
Huiwen Xue ◽  
Haochen Li ◽  
Yanfei Wang

In this paper, a novel K-means clustering algorithm is proposed. Before running the traditional Kmeans, the cluster centers should be randomly selected, which would influence the time cost and accuracy. To solve this problem, we utilize density distribution analysis in the traditional K-means. For a reasonable cluster, it should have a dense inside structure which means the points in the same cluster should tightly surround the center, while separated away from other cluster canters. Based on this assumption, two quantities are firstly introduced: the local density of cluster center ρi and its desperation degree δi, then some reasonable cluster centers candidates are selected from the original data. We performed our algorithm on three synthetic data and a real bank business data to evaluate its accuracy and efficiency. Comparing with Traditional K-means and K-means++, the results demonstrated that the improved method performs better.


Sign in / Sign up

Export Citation Format

Share Document