scholarly journals Efficient and High Path Quality Autonomous Exploration and Trajectory Planning of UAV in an Unknown Environment

2021 ◽  
Vol 10 (10) ◽  
pp. 631
Author(s):  
Leyang Zhao ◽  
Li Yan ◽  
Xiao Hu ◽  
Jinbiao Yuan ◽  
Zhenbao Liu

The ability of an autonomous Unmanned Aerial Vehicle (UAV) in an unknown environment is a prerequisite for its execution of complex tasks and is the main research direction in related fields. The autonomous navigation of UAVs in unknown environments requires solving the problem of autonomous exploration of the surrounding environment and path planning, which determines whether the drones can complete mission-based flights safely and efficiently. Existing UAV autonomous flight systems hardly perform well in terms of efficient exploration and flight trajectory quality. This paper establishes an integrated solution for autonomous exploration and path planning. In terms of autonomous exploration, frontier-based and sampling-based exploration strategies are integrated to achieve fast and effective exploration performance. In the study of path planning in complex environments, an advanced Rapidly Exploring Random Tree (RRT) algorithm combining the adaptive weights and dynamic step size is proposed, which effectively solves the problem of balancing flight time and trajectory quality. Then, this paper uses the Hermite difference polynomial to optimization the trajectory generated by the RRT algorithm. We named proposed UAV autonomous flight system as Frontier and Sampling-based Exploration and Advanced RRT Planner system (FSEPlanner). Simulation performs in both apartment and maze environment, and results show that the proposed FSEPlanner algorithm achieves greatly improved time consumption and path distances, and the smoothed path is more in line with the actual flight needs of a UAV.

Author(s):  
Lee Gim Hee ◽  
◽  
Marcelo H. Ang Jr. ◽  

Global path planning algorithms are good in planning an optimal path in a known environment, but would fail in an unknown environment and when reacting to dynamic and unforeseen obstacles. Conversely, local navigation algorithms perform well in reacting to dynamic and unforeseen obstacles but are susceptible to local minima failures. A hybrid integration of both the global path planning and local navigation algorithms would allow a mobile robot to find an optimal path and react to any dynamic and unforeseen obstacles during an operation. However, the hybrid method requires the robot to possess full or partial prior information of the environment for path planning and would fail in a totally unknown environment. The integrated algorithm proposed and implemented in this paper incorporates an autonomous exploration technique into the hybrid method. The algorithm gives a mobile robot the ability to plan an optimal path and does online collision avoidance in a totally unknown environment.


2021 ◽  
Author(s):  
Salvador Ortiz ◽  
Wen Yu

In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM) method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic algorithm, our novel path planning method shows many advantages compared with other popular methods.


Author(s):  
Olusanya Agunbiade ◽  
Tranos Zuva

The important characteristic that could assist in autonomous navigation is the ability of a mobile robot to concurrently construct a map for an unknown environment and localize itself within the same environment. This computational problem is known as Simultaneous Localization and Mapping (SLAM). In literature, researchers have studied this approach extensively and have proposed a lot of improvement towards it. More so, we are experiencing a steady transition of this technology to industries. However, there are still setbacks limiting the full acceptance of this technology even though the research had been conducted over the last 30 years. Thus, to determine the problems facing SLAM, this paper conducted a review on various foundation and recent SLAM algorithms. Challenges and open issues alongside the research direction for this area were discussed. However, towards addressing the problem discussed, a novel SLAM technique will be proposed.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090996 ◽  
Author(s):  
Yonghong Zhi ◽  
Yan Jiang

Aiming at the strong dependence on environmental information in traditional algorithms, the path planning of basketball robots in an unknown environment, and improving the safety of autonomous navigation, this article proposes a path planning algorithm based on behavior-based module control. In this article, fuzzy control theory is applied to the behavior control structure, and these two path planning algorithms are combined to solve the path planning problem of basketball robots in an unknown environment. First, the data of each sensor of the basketball robot configuration are simply fused. Then, the obstacle distance parameters in the three directions of front, left, and right are simplified and fuzzified. Then combined with the target direction parameters, the speed, and steering of the basketball robot are controlled by fuzzy rule reasoning to realize path planning. The simulation results show that the basketball robot can overcome the uncertainty in the environment, effectively achieve good path planning, verify the feasibility of the fuzzy control algorithm, and demonstrate the validity and correctness of the path planning strategy.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 651
Author(s):  
Shengyi Zhao ◽  
Yun Peng ◽  
Jizhan Liu ◽  
Shuo Wu

Crop disease diagnosis is of great significance to crop yield and agricultural production. Deep learning methods have become the main research direction to solve the diagnosis of crop diseases. This paper proposed a deep convolutional neural network that integrates an attention mechanism, which can better adapt to the diagnosis of a variety of tomato leaf diseases. The network structure mainly includes residual blocks and attention extraction modules. The model can accurately extract complex features of various diseases. Extensive comparative experiment results show that the proposed model achieves the average identification accuracy of 96.81% on the tomato leaf diseases dataset. It proves that the model has significant advantages in terms of network complexity and real-time performance compared with other models. Moreover, through the model comparison experiment on the grape leaf diseases public dataset, the proposed model also achieves better results, and the average identification accuracy of 99.24%. It is certified that add the attention module can more accurately extract the complex features of a variety of diseases and has fewer parameters. The proposed model provides a high-performance solution for crop diagnosis under the real agricultural environment.


2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


2014 ◽  
Vol 584-586 ◽  
pp. 944-950 ◽  
Author(s):  
Dong Fu Zhao ◽  
Mei Liu ◽  
Shi Ji Zhang

The domestic and overseas research progresses of microstructure of the concrete and fatigue damage after treated by high temperature are reviewed. The main research direction and current shortage on the high temperature process, fatigue damage and the microstructure evolution mechanism of concrete are discussed. A view of the application prospects of concrete research on the high temperature process, fatigue damage and the microstructure evolution mechanism of concrete is forecast.


Author(s):  
Haishu Ma ◽  
Zongzheng Ma ◽  
Lixia Li ◽  
Ya Gao

Due to the proliferation of the IoT devices, indoor location-based service is bringing huge business values and potentials. The positioning accuracy is restricted by the variability and complexity of the indoor environment. Radio Frequency Identification (RFID), as a key technology of the Internet of Things, has became the main research direction in the field of indoor positioning because of its non-contact, non-line-of-sight and strong anti-interference abilities. This paper proposes the deep leaning approach for RFID based indoor localization. Since the measured Received Signal Strength Indicator (RSSI) can be influenced by many indoor environment factors, Kalman filter is applied to erase the fluctuation. Furthermore, linear interpolation is adopted to increase the density of the reference tags. In order to improve the processing ability of the fingerprint database, deep neural network is adopted together with the fingerprinting method to optimize the non-linear mapping between fingerprints and indoor coordinates. The experimental results show that the proposed method achieves high accuracy with a mean estimation error of 0.347 m.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3943
Author(s):  
Nicolas Montés ◽  
Francisco Chinesta ◽  
Marta C. Mora ◽  
Antonio Falcó ◽  
Lucia Hilario ◽  
...  

This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property of the proposed technique is that the computational cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of the method is the off-line generation, for a given environment, of the whole set of paths from any start and goal configurations of a mobile robot, namely the computational vademecum, derived from a harmonic potential field in order to use it on-line for decision-making purposes. Up until now, the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic functions in autonomous navigation, despite their powerful properties. The numerical technique that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate the properties of the PGD-vademecum in a potential-guided path planning framework, both real and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot running in static environments with variable start and goal configurations is shown. This device has been selected due to its computational and memory-restricted capabilities, and it is a good example of how its properties could help the development of social robots.


Sign in / Sign up

Export Citation Format

Share Document