scholarly journals Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images

2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Shengfu Li ◽  
Cheng Liao ◽  
Yulin Ding ◽  
Han Hu ◽  
Yang Jia ◽  
...  

Efficient and accurate road extraction from remote sensing imagery is important for applications related to navigation and Geographic Information System updating. Existing data-driven methods based on semantic segmentation recognize roads from images pixel by pixel, which generally uses only local spatial information and causes issues of discontinuous extraction and jagged boundary recognition. To address these problems, we propose a cascaded attention-enhanced architecture to extract boundary-refined roads from remote sensing images. Our proposed architecture uses spatial attention residual blocks on multi-scale features to capture long-distance relations and introduce channel attention layers to optimize the multi-scale features fusion. Furthermore, a lightweight encoder-decoder network is connected to adaptively optimize the boundaries of the extracted roads. Our experiments showed that the proposed method outperformed existing methods and achieved state-of-the-art results on the Massachusetts dataset. In addition, our method achieved competitive results on more recent benchmark datasets, e.g., the DeepGlobe and the Huawei Cloud road extraction challenge.

2019 ◽  
Vol 9 (19) ◽  
pp. 4043
Author(s):  
Ende Wang ◽  
Yanmei Jiang ◽  
Yong Li ◽  
Jingchao Yang ◽  
Mengcheng Ren ◽  
...  

Semantic segmentation of remote sensing images is an important technique for spatial analysis and geocomputation. It has important applications in the fields of military reconnaissance, urban planning, resource utilization and environmental monitoring. In order to accurately perform semantic segmentation of remote sensing images, we proposed a novel multi-scale deep features fusion and cost-sensitive loss function based segmentation network, named MFCSNet. To acquire the information of different levels in remote sensing images, we design a multi-scale feature encoding and decoding structure, which can fuse the low-level and high-level semantic information. Then a max-pooling indices up-sampling structure is designed to improve the recognition rate of the object edge and location information in the remote sensing image. In addition, the cost-sensitive loss function is designed to improve the classification accuracy of objects with fewer samples. The penalty coefficient of misclassification is designed to improve the robustness of the network model, and the batch normalization layer is also added to make the network converge faster. The experimental results show that the classification performance of MFCSNet outperforms U-Net and SegNet in classification accuracy, object details and prediction consistency.


2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


2021 ◽  
Vol 11 (11) ◽  
pp. 5050
Author(s):  
Jiahai Tan ◽  
Ming Gao ◽  
Kai Yang ◽  
Tao Duan

Road extraction from remote sensing images has attracted much attention in geospatial applications. However, the existing methods do not accurately identify the connectivity of the road. The identification of the road pixels may be interfered with by the abundant ground such as buildings, trees, and shadows. The objective of this paper is to enhance context and strip features of the road by designing UNet-like architecture. The overall method first enhances the context characteristics in the segmentation step and then maintains the stripe characteristics in a refinement step. The segmentation step exploits an attention mechanism to enhance the context information between the adjacent layers. To obtain the strip features of the road, the refinement step introduces the strip pooling in a refinement network to restore the long distance dependent information of the road. Extensive comparative experiments demonstrate that the proposed method outperforms other methods, achieving an overall accuracy of 98.25% on the DeepGlobe dataset, and 97.68% on the Massachusetts dataset.


2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Junqing Huang ◽  
Liguo Weng ◽  
Bingyu Chen ◽  
Min Xia

Analyzing land cover using remote sensing images has broad prospects, the precise segmentation of land cover is the key to the application of this technology. Nowadays, the Convolution Neural Network (CNN) is widely used in many image semantic segmentation tasks. However, existing CNN models often exhibit poor generalization ability and low segmentation accuracy when dealing with land cover segmentation tasks. To solve this problem, this paper proposes Dual Function Feature Aggregation Network (DFFAN). This method combines image context information, gathers image spatial information, and extracts and fuses features. DFFAN uses residual neural networks as backbone to obtain different dimensional feature information of remote sensing images through multiple downsamplings. This work designs Affinity Matrix Module (AMM) to obtain the context of each feature map and proposes Boundary Feature Fusion Module (BFF) to fuse the context information and spatial information of an image to determine the location distribution of each image’s category. Compared with existing methods, the proposed method is significantly improved in accuracy. Its mean intersection over union (MIoU) on the LandCover dataset reaches 84.81%.


2018 ◽  
Vol 10 (6) ◽  
pp. 964 ◽  
Author(s):  
Zhenfeng Shao ◽  
Ke Yang ◽  
Weixun Zhou

Benchmark datasets are essential for developing and evaluating remote sensing image retrieval (RSIR) approaches. However, most of the existing datasets are single-labeled, with each image in these datasets being annotated by a single label representing the most significant semantic content of the image. This is sufficient for simple problems, such as distinguishing between a building and a beach, but multiple labels and sometimes even dense (pixel) labels are required for more complex problems, such as RSIR and semantic segmentation.We therefore extended the existing multi-labeled dataset collected for multi-label RSIR and presented a dense labeling remote sensing dataset termed "DLRSD". DLRSD contained a total of 17 classes, and the pixels of each image were assigned with 17 pre-defined labels. We used DLRSD to evaluate the performance of RSIR methods ranging from traditional handcrafted feature-based methods to deep learning-based ones. More specifically, we evaluated the performances of RSIR methods from both single-label and multi-label perspectives. These results demonstrated the advantages of multiple labels over single labels for interpreting complex remote sensing images. DLRSD provided the literature a benchmark for RSIR and other pixel-based problems such as semantic segmentation.


2020 ◽  
Vol 9 (10) ◽  
pp. 571
Author(s):  
Jinglun Li ◽  
Jiapeng Xiu ◽  
Zhengqiu Yang ◽  
Chen Liu

Semantic segmentation plays an important role in being able to understand the content of remote sensing images. In recent years, deep learning methods based on Fully Convolutional Networks (FCNs) have proved to be effective for the sematic segmentation of remote sensing images. However, the rich information and complex content makes the training of networks for segmentation challenging, and the datasets are necessarily constrained. In this paper, we propose a Convolutional Neural Network (CNN) model called Dual Path Attention Network (DPA-Net) that has a simple modular structure and can be added to any segmentation model to enhance its ability to learn features. Two types of attention module are appended to the segmentation model, one focusing on spatial information the other focusing upon the channel. Then, the outputs of these two attention modules are fused to further improve the network’s ability to extract features, thus contributing to more precise segmentation results. Finally, data pre-processing and augmentation strategies are used to compensate for the small number of datasets and uneven distribution. The proposed network was tested on the Gaofen Image Dataset (GID). The results show that the network outperformed U-Net, PSP-Net, and DeepLab V3+ in terms of the mean IoU by 0.84%, 2.54%, and 1.32%, respectively.


2020 ◽  
Vol 9 (4) ◽  
pp. 256 ◽  
Author(s):  
Liguo Weng ◽  
Yiming Xu ◽  
Min Xia ◽  
Yonghong Zhang ◽  
Jia Liu ◽  
...  

Changes on lakes and rivers are of great significance for the study of global climate change. Accurate segmentation of lakes and rivers is critical to the study of their changes. However, traditional water area segmentation methods almost all share the following deficiencies: high computational requirements, poor generalization performance, and low extraction accuracy. In recent years, semantic segmentation algorithms based on deep learning have been emerging. Addressing problems associated to a very large number of parameters, low accuracy, and network degradation during training process, this paper proposes a separable residual SegNet (SR-SegNet) to perform the water area segmentation using remote sensing images. On the one hand, without compromising the ability of feature extraction, the problem of network degradation is alleviated by adding modified residual blocks into the encoder, the number of parameters is limited by introducing depthwise separable convolutions, and the ability of feature extraction is improved by using dilated convolutions to expand the receptive field. On the other hand, SR-SegNet removes the convolution layers with relatively more convolution kernels in the encoding stage, and uses the cascading method to fuse the low-level and high-level features of the image. As a result, the whole network can obtain more spatial information. Experimental results show that the proposed method exhibits significant improvements over several traditional methods, including FCN, DeconvNet, and SegNet.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Aziguli Wulamu ◽  
Zuxian Shi ◽  
Dezheng Zhang ◽  
Zheyu He

Recent advances in convolutional neural networks (CNNs) have shown impressive results in semantic segmentation. Among the successful CNN-based methods, U-Net has achieved exciting performance. In this paper, we proposed a novel network architecture based on U-Net and atrous spatial pyramid pooling (ASPP) to deal with the road extraction task in the remote sensing field. On the one hand, U-Net structure can effectively extract valuable features; on the other hand, ASPP is able to utilize multiscale context information in remote sensing images. Compared to the baseline, this proposed model has improved the pixelwise mean Intersection over Union (mIoU) of 3 points. Experimental results show that the proposed network architecture can deal with different types of road surface extraction tasks under various terrains in Yinchuan city, solve the road connectivity problem to some extent, and has certain tolerance to shadows and occlusion.


2021 ◽  
Vol 13 (16) ◽  
pp. 3211
Author(s):  
Tian Tian ◽  
Zhengquan Chu ◽  
Qian Hu ◽  
Li Ma

Semantic segmentation is a fundamental task in remote sensing image interpretation, which aims to assign a semantic label for every pixel in the given image. Accurate semantic segmentation is still challenging due to the complex distributions of various ground objects. With the development of deep learning, a series of segmentation networks represented by fully convolutional network (FCN) has made remarkable progress on this problem, but the segmentation accuracy is still far from expectations. This paper focuses on the importance of class-specific features of different land cover objects, and presents a novel end-to-end class-wise processing framework for segmentation. The proposed class-wise FCN (C-FCN) is shaped in the form of an encoder-decoder structure with skip-connections, in which the encoder is shared to produce general features for all categories and the decoder is class-wise to process class-specific features. To be detailed, class-wise transition (CT), class-wise up-sampling (CU), class-wise supervision (CS), and class-wise classification (CC) modules are designed to achieve the class-wise transfer, recover the resolution of class-wise feature maps, bridge the encoder and modified decoder, and implement class-wise classifications, respectively. Class-wise and group convolutions are adopted in the architecture with regard to the control of parameter numbers. The method is tested on the public ISPRS 2D semantic labeling benchmark datasets. Experimental results show that the proposed C-FCN significantly improves the segmentation performances compared with many state-of-the-art FCN-based networks, revealing its potentials on accurate segmentation of complex remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document