scholarly journals Water Areas Segmentation from Remote Sensing Images Using a Separable Residual SegNet Network

2020 ◽  
Vol 9 (4) ◽  
pp. 256 ◽  
Author(s):  
Liguo Weng ◽  
Yiming Xu ◽  
Min Xia ◽  
Yonghong Zhang ◽  
Jia Liu ◽  
...  

Changes on lakes and rivers are of great significance for the study of global climate change. Accurate segmentation of lakes and rivers is critical to the study of their changes. However, traditional water area segmentation methods almost all share the following deficiencies: high computational requirements, poor generalization performance, and low extraction accuracy. In recent years, semantic segmentation algorithms based on deep learning have been emerging. Addressing problems associated to a very large number of parameters, low accuracy, and network degradation during training process, this paper proposes a separable residual SegNet (SR-SegNet) to perform the water area segmentation using remote sensing images. On the one hand, without compromising the ability of feature extraction, the problem of network degradation is alleviated by adding modified residual blocks into the encoder, the number of parameters is limited by introducing depthwise separable convolutions, and the ability of feature extraction is improved by using dilated convolutions to expand the receptive field. On the other hand, SR-SegNet removes the convolution layers with relatively more convolution kernels in the encoding stage, and uses the cascading method to fuse the low-level and high-level features of the image. As a result, the whole network can obtain more spatial information. Experimental results show that the proposed method exhibits significant improvements over several traditional methods, including FCN, DeconvNet, and SegNet.

2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Junqing Huang ◽  
Liguo Weng ◽  
Bingyu Chen ◽  
Min Xia

Analyzing land cover using remote sensing images has broad prospects, the precise segmentation of land cover is the key to the application of this technology. Nowadays, the Convolution Neural Network (CNN) is widely used in many image semantic segmentation tasks. However, existing CNN models often exhibit poor generalization ability and low segmentation accuracy when dealing with land cover segmentation tasks. To solve this problem, this paper proposes Dual Function Feature Aggregation Network (DFFAN). This method combines image context information, gathers image spatial information, and extracts and fuses features. DFFAN uses residual neural networks as backbone to obtain different dimensional feature information of remote sensing images through multiple downsamplings. This work designs Affinity Matrix Module (AMM) to obtain the context of each feature map and proposes Boundary Feature Fusion Module (BFF) to fuse the context information and spatial information of an image to determine the location distribution of each image’s category. Compared with existing methods, the proposed method is significantly improved in accuracy. Its mean intersection over union (MIoU) on the LandCover dataset reaches 84.81%.


2020 ◽  
Vol 9 (10) ◽  
pp. 571
Author(s):  
Jinglun Li ◽  
Jiapeng Xiu ◽  
Zhengqiu Yang ◽  
Chen Liu

Semantic segmentation plays an important role in being able to understand the content of remote sensing images. In recent years, deep learning methods based on Fully Convolutional Networks (FCNs) have proved to be effective for the sematic segmentation of remote sensing images. However, the rich information and complex content makes the training of networks for segmentation challenging, and the datasets are necessarily constrained. In this paper, we propose a Convolutional Neural Network (CNN) model called Dual Path Attention Network (DPA-Net) that has a simple modular structure and can be added to any segmentation model to enhance its ability to learn features. Two types of attention module are appended to the segmentation model, one focusing on spatial information the other focusing upon the channel. Then, the outputs of these two attention modules are fused to further improve the network’s ability to extract features, thus contributing to more precise segmentation results. Finally, data pre-processing and augmentation strategies are used to compensate for the small number of datasets and uneven distribution. The proposed network was tested on the Gaofen Image Dataset (GID). The results show that the network outperformed U-Net, PSP-Net, and DeepLab V3+ in terms of the mean IoU by 0.84%, 2.54%, and 1.32%, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Aziguli Wulamu ◽  
Zuxian Shi ◽  
Dezheng Zhang ◽  
Zheyu He

Recent advances in convolutional neural networks (CNNs) have shown impressive results in semantic segmentation. Among the successful CNN-based methods, U-Net has achieved exciting performance. In this paper, we proposed a novel network architecture based on U-Net and atrous spatial pyramid pooling (ASPP) to deal with the road extraction task in the remote sensing field. On the one hand, U-Net structure can effectively extract valuable features; on the other hand, ASPP is able to utilize multiscale context information in remote sensing images. Compared to the baseline, this proposed model has improved the pixelwise mean Intersection over Union (mIoU) of 3 points. Experimental results show that the proposed network architecture can deal with different types of road surface extraction tasks under various terrains in Yinchuan city, solve the road connectivity problem to some extent, and has certain tolerance to shadows and occlusion.


2012 ◽  
Vol 263-266 ◽  
pp. 416-420 ◽  
Author(s):  
Xiao Qing Luo ◽  
Xiao Jun Wu

Enhance spectral fusion quality is the one of most significant targets in the field of remote sensing image fusion. In this paper, a statistical model based fusion method is proposed, which is the improved method for fusing remote sensing images on the basis of the framework of Principal Component Analysis(PCA) and wavelet decomposition-based image fusion. PCA is applied to the source images. In order to retain the entropy information of data, we select the principal component axes based on entropy contribution(ECA). The first entropy component and panchromatic image(PAN) are performed a multiresolution decompositon using wavelet transform. The low frequency subband fused by weighted aggregation approach and high frequency subband fused by statistical model. High resolution multispectral image is then obtained by an inverse wavelet and ECA transform. The experimental results demonstrate that the proposed method can retain the spectral information and spatial information in the fusion of PAN and multi-spectral image(MS).


2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Shengfu Li ◽  
Cheng Liao ◽  
Yulin Ding ◽  
Han Hu ◽  
Yang Jia ◽  
...  

Efficient and accurate road extraction from remote sensing imagery is important for applications related to navigation and Geographic Information System updating. Existing data-driven methods based on semantic segmentation recognize roads from images pixel by pixel, which generally uses only local spatial information and causes issues of discontinuous extraction and jagged boundary recognition. To address these problems, we propose a cascaded attention-enhanced architecture to extract boundary-refined roads from remote sensing images. Our proposed architecture uses spatial attention residual blocks on multi-scale features to capture long-distance relations and introduce channel attention layers to optimize the multi-scale features fusion. Furthermore, a lightweight encoder-decoder network is connected to adaptively optimize the boundaries of the extracted roads. Our experiments showed that the proposed method outperformed existing methods and achieved state-of-the-art results on the Massachusetts dataset. In addition, our method achieved competitive results on more recent benchmark datasets, e.g., the DeepGlobe and the Huawei Cloud road extraction challenge.


2020 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Song Ouyang ◽  
Yansheng Li

Although the deep semantic segmentation network (DSSN) has been widely used in remote sensing (RS) image semantic segmentation, it still does not fully mind the spatial relationship cues between objects when extracting deep visual features through convolutional filters and pooling layers. In fact, the spatial distribution between objects from different classes has a strong correlation characteristic. For example, buildings tend to be close to roads. In view of the strong appearance extraction ability of DSSN and the powerful topological relationship modeling capability of the graph convolutional neural network (GCN), a DSSN-GCN framework, which combines the advantages of DSSN and GCN, is proposed in this paper for RS image semantic segmentation. To lift the appearance extraction ability, this paper proposes a new DSSN called the attention residual U-shaped network (AttResUNet), which leverages residual blocks to encode feature maps and the attention module to refine the features. As far as GCN, the graph is built, where graph nodes are denoted by the superpixels and the graph weight is calculated by considering the spectral information and spatial information of the nodes. The AttResUNet is trained to extract the high-level features to initialize the graph nodes. Then the GCN combines features and spatial relationships between nodes to conduct classification. It is worth noting that the usage of spatial relationship knowledge boosts the performance and robustness of the classification module. In addition, benefiting from modeling GCN on the superpixel level, the boundaries of objects are restored to a certain extent and there are less pixel-level noises in the final classification result. Extensive experiments on two publicly open datasets show that DSSN-GCN model outperforms the competitive baseline (i.e., the DSSN model) and the DSSN-GCN when adopting AttResUNet achieves the best performance, which demonstrates the advance of our method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binglin Niu

High-resolution remote sensing images usually contain complex semantic information and confusing targets, so their semantic segmentation is an important and challenging task. To resolve the problem of inadequate utilization of multilayer features by existing methods, a semantic segmentation method for remote sensing images based on convolutional neural network and mask generation is proposed. In this method, the boundary box is used as the initial foreground segmentation profile, and the edge information of the foreground object is obtained by using the multilayer feature of the convolutional neural network. In order to obtain the rough object segmentation mask, the general shape and position of the foreground object are estimated by using the high-level features in the process of layer-by-layer iteration. Then, based on the obtained rough mask, the mask is updated layer by layer using the neural network characteristics to obtain a more accurate mask. In order to solve the difficulty of deep neural network training and the problem of degeneration after convergence, a framework based on residual learning was adopted, which can simplify the training of those very deep networks and improve the accuracy of the network. For comparison with other advanced algorithms, the proposed algorithm was tested on the Potsdam and Vaihingen datasets. Experimental results show that, compared with other algorithms, the algorithm in this article can effectively improve the overall precision of semantic segmentation of high-resolution remote sensing images and shorten the overall training time and segmentation time.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Ziqiang Yao ◽  
Jinlu Jia ◽  
Yurong Qian

Cloud detection plays a vital role in remote sensing data preprocessing. Traditional cloud detection algorithms have difficulties in feature extraction and thus produce a poor detection result when processing remote sensing images with uneven cloud distribution and complex surface background. To achieve better detection results, a cloud detection method with multi-scale feature extraction and content-aware reassembly network (MCNet) is proposed. Using pyramid convolution and channel attention mechanisms to enhance the model’s feature extraction capability, MCNet can fully extract the spatial information and channel information of clouds in an image. The content-aware reassembly is used to ensure that sampling on the network can recover enough in-depth semantic information and improve the model cloud detection effect. The experimental results show that the proposed MCNet model has achieved good detection results in cloud detection tasks.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2064 ◽  
Author(s):  
Shuai Wang ◽  
Hui Yang ◽  
Qiangqiang Wu ◽  
Zhiteng Zheng ◽  
Yanlan Wu ◽  
...  

At present, deep-learning methods have been widely used in road extraction from remote-sensing images and have effectively improved the accuracy of road extraction. However, these methods are still affected by the loss of spatial features and the lack of global context information. To solve these problems, we propose a new network for road extraction, the coord-dense-global (CDG) model, built on three parts: a coordconv module by putting coordinate information into feature maps aimed at reducing the loss of spatial information and strengthening road boundaries, an improved dense convolutional network (DenseNet) that could make full use of multiple features through own dense blocks, and a global attention module designed to highlight high-level information and improve category classification by using pooling operation to introduce global information. When tested on a complex road dataset from Massachusetts, USA, CDG achieved clearly superior performance to contemporary networks such as DeepLabV3+, U-net, and D-LinkNet. For example, its mean IoU (intersection of the prediction and ground truth regions over their union) and mean F1 score (evaluation metric for the harmonic mean of the precision and recall metrics) were 61.90% and 76.10%, respectively, which were 1.19% and 0.95% higher than the results of D-LinkNet (the winner of a road-extraction contest). In addition, CDG was also superior to the other three models in solving the problem of tree occlusion. Finally, in universality research with the Gaofen-2 satellite dataset, the CDG model also performed well at extracting the road network in the test maps of Hefei and Tianjin, China.


Sign in / Sign up

Export Citation Format

Share Document