scholarly journals Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

2014 ◽  
Vol 3 (3) ◽  
pp. 871-890 ◽  
Author(s):  
Juho-Pekka Virtanen ◽  
Hannu Hyyppä ◽  
Matti Kurkela ◽  
Matti Vaaja ◽  
Petteri Alho ◽  
...  
2015 ◽  
Vol 4 (8) ◽  
pp. 55 ◽  
Author(s):  
Fausta Fiorillo ◽  
Belén Jiménez Fernández-Palacios ◽  
Fabio Remondino ◽  
Salvatore Barba

<p>The intention of this interdisciplinary work is the integration of different 3D recording techniques and instruments to survey the archaeological area of Paestum (Italy) and obtain digital models of the main structures and temples of the site. The ancient city of Paestum, included in the UNESCO World Heritage list since 1998, is one of the most important archaeological sites in Italy, preserving the vestiges and ruins of Greek and Roman times, including three Doric temples. Photogrammetry and terrestrial laser scanning (TLS) acquisitions were integrated in order to exploit the intrinsic advantages of the actual 3D surveying techniques and produces digital models, orthoimages, maps and other geometric representations useful for archaeological, architectural and communication needs.</p>


Author(s):  
Simone Garagnani

For years the traditional documentation of existing architecture has been represented by surveys, carried out with direct measuring, annotations and eidotypes. This approach is still pervasive today, but many modern metrologic technologies, such as digital photogrammetry and terrestrial laser scanning, enhanced the information-gathering pipeline particularly in the Cultural Heritage context. This chapter investigates a methodology able to express semantics and parametric interconnections among elements, proposed in order to translate real shapes into “smart” digital architectural components, using some piece of software specifically written in order to manipulate accurate geometries; following this approach, which will be improved more and more by future plugin developments, information can be organized into proper hierarchical BIM frameworks that proved to be strategic in the recording of “as-built” conditions, result of inferences of geometric and topological information in digital models.


Author(s):  
Simone Garagnani

For years the traditional documentation of existing architecture has been represented by surveys, carried out with direct measuring, annotations and eidotypes. This approach is still pervasive today, but many modern metrologic technologies, such as digital photogrammetry and terrestrial laser scanning, enhanced the information-gathering pipeline particularly in the Cultural Heritage context. This chapter investigates a methodology able to express semantics and parametric interconnections among elements, proposed in order to translate real shapes into “smart” digital architectural components, using some piece of software specifically written in order to manipulate accurate geometries; following this approach, which will be improved more and more by future plugin developments, information can be organized into proper hierarchical BIM frameworks that proved to be strategic in the recording of “as-built” conditions, result of inferences of geometric and topological information in digital models.


Chimera ◽  
2013 ◽  
Vol 26 (2012/2013) ◽  
pp. 69-83
Author(s):  
Sarah M. Kandrot

Monitoring changes in the morphology of coastal environments is important for understanding how they function as systems and how they can be most effectively managed to offer maximum protection of the coastal hinterland. The quick, precise, and efficient method of topographic data capture associated with a remote sensing (RS) technology called terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), facilitates improved monitoring of morphological changes to coastal environments over traditional survey methods. Terrestrial laser scanning systems are capable of providing extremely detailed 3-dimensional topographic information in the form of a “point cloud” – a densely packed collection of x,y,z coordinates that collectively represent the external surface (often the ground) of a surveyed area. Such detailed elevation information is useful for coastal research, resource management and planning, hazard and risk assessment, and evaluating the impacts of climate change and sea-level rise on the coast. This paper introduces TLS and its applications in a coastal setting and addresses some of the challenges associated with its use as a monitoring tool in vegetated coastal dune environments. Such challenges include optimising time spent in the field, working with large datasets, classifying simple and complex scenes, and analysing multi-temporal datasets.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


2021 ◽  
Vol 7 (1) ◽  
pp. 51-83
Author(s):  
Davide Tanasi ◽  
Stephan Hassam ◽  
Kaitlyn Kingsland ◽  
Paolo Trapani ◽  
Matthew King ◽  
...  

Abstract The archaeological site of the Domus Romana in Rabat, Malta was excavated almost 100 years ago yielding artefacts from the various phases of the site. The Melite Civitas Romana project was designed to investigate the domus, which may have been the home of a Roman Senator, and its many phases of use. Pending planned archaeological excavations designed to investigate the various phases of the site, a team from the Institute for Digital Exploration from the University of South Florida carried out a digitization campaign in the summer of 2019 using terrestrial laser scanning and aerial digital photogrammetry to document the current state of the site to provide a baseline of documentation and plan the coming excavations. In parallel, structured light scanning and photogrammetry were used to digitize 128 artefacts in the museum of the Domus Romana to aid in off-site research and create a virtual museum platform for global dissemination.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Sign in / Sign up

Export Citation Format

Share Document