scholarly journals Generating a High-Precision True Digital Orthophoto Map Based on UAV Images

2018 ◽  
Vol 7 (9) ◽  
pp. 333 ◽  
Author(s):  
Yu Liu ◽  
Xinqi Zheng ◽  
Gang Ai ◽  
Yi Zhang ◽  
Yuqiang Zuo

Unmanned aerial vehicle (UAV) low-altitude remote sensing technology has recently been adopted in China. However, mapping accuracy and production processes of true digital orthophoto maps (TDOMs) generated by UAV images require further improvement. In this study, ground control points were distributed and images were collected using a multi-rotor UAV and professional camera, at a flight height of 160 m above the ground and a designed ground sample distance (GSD) of 0.016 m. A structure from motion (SfM), revised digital surface model (DSM) and multi-view image texture compensation workflow were outlined to generate a high-precision TDOM. We then used randomly distributed checkpoints on the TDOM to verify its precision. The horizontal accuracy of the generated TDOM was 0.0365 m, the vertical accuracy was 0.0323 m, and the GSD was 0.0166 m. Tilt and shadowed areas of the TDOM were eliminated so that buildings maintained vertical viewing angles. This workflow produced a TDOM accuracy within 0.05 m, and provided an effective method for identifying rural homesteads, as well as land planning and design.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Le VAN CANH ◽  
Cao XUAN CUONG ◽  
Nguyen QUOC LONG ◽  
Le THI THU HA ◽  
Tran TRUNG ANH ◽  
...  

Open-pit coal mines’ terrain is often complex and quickly and frequently changes. Therefore, topographic surveys of open-pit mines are undertaken on a daily basis. While these tasks are very time-consuming and costly with traditional methods such as total station and GNSS, the unmanned aerial vehicle (UAV) based method can be more efficient. This method is a combination of the “Structure from motion” (SfM) photogrammetry technique and UAV photogrammetry which has been widely used in topographic surveying. With an increasing popularity of RTK-enabled drones, it is becoming even more powerful method. While the important role of ground control points (GCP) in the accuracy of digital surface model (DSM) generated from images acquired by “traditional” UAVs (not RTK-enabled drones) has been proved in many previous studies, it is not clear in the case of RTK-enabled drones, especially for complex terrain in open-pit coal mines. In this study, we experimentally investigated the influence of GCP regarding its numbers and distribution on the accuracy of DSM generation from images acquired by RTK-enabled drones in open-pit coal mines. In addition, the Post Processing Kinematic (PPK) mode was executed over a test field with the same flight altitude. DSM generation was performed with several block control configurations: PPK only, PPK with one GCP, and PPK with two GCPs. Several positions of GCPs were also examined to test the optimal locations for placing GCPs to achieve accurate DSMs. The results show that the horizontal and vertical accuracy given by PPK only were 9.3 and 84.4 cm, respectively. However, when adding at least one GCP, the accuracy was significantly improved in both horizontal and vertical components, with RMSE for XY and Z ranging between 3.8 and 9.8 cm (with one GCP) and between 3.0 and 5.7 cm (with two GCPs), respectively. Also, the GCPs placed in the deep areas of the open-pit mine could ensure the cm-level accuracy.


Author(s):  
Muhammad Farhan Zolkepli Et.al

This paper discusses the applications of unmanned aerial vehicle (UAV) for slope mapping and also its important parameters including perimeter, area and also volume of certain selected area. With the development of modern technology, the utilization of UAV to gather data for slope mapping becoming easier as it is quick, reliable, precise, cost-effective and also easily to operate. Modern UAV able to take high quality image which essential for the effectiveness and nature of normal mapping output such as Digital Surface Model (DSM) and Digital Orthophoto. This photo captured by UAV will later transfer to commercial software to generate full map of study area. With the help of established software, the measurement of selected study areas can be determined easily which can be considered as the main interest in this study. In addition, another outcome of this study is, this modern method of mapping will be compare to traditional method of mapping which proven to be more effective in term of low costing, low time consuming, can gather huge amount of data within short period of time, low man power needed and almost no potential risk of hazardous effect to man.


2018 ◽  
Vol 10 (12) ◽  
pp. 1952 ◽  
Author(s):  
Fangning He ◽  
Tian Zhou ◽  
Weifeng Xiong ◽  
Seyyed Hasheminnasab ◽  
Ayman Habib

Accurate 3D reconstruction/modelling from unmanned aerial vehicle (UAV)-based imagery has become the key prerequisite in various applications. Although current commercial software has automated the process of image-based reconstruction, a transparent system, which can be incorporated with different user-defined constraints, is still preferred by the photogrammetric research community. In this regard, this paper presents a transparent framework for the automated aerial triangulation of UAV images. The proposed framework is conducted in three steps. In the first step, two approaches, which take advantage of prior information regarding the flight trajectory, are implemented for reliable relative orientation recovery. Then, initial recovery of image exterior orientation parameters (EOPs) is achieved through either an incremental or global approach. Finally, a global bundle adjustment involving Ground Control Points (GCPs) and check points is carried out to refine all estimated parameters in the defined mapping coordinate system. Four real image datasets, which are acquired by two different UAV platforms, have been utilized to evaluate the feasibility of the proposed framework. In addition, a comparative analysis between the proposed framework and the existing commercial software is performed. The derived experimental results demonstrate the superior performance of the proposed framework in providing an accurate 3D model, especially when dealing with acquired UAV images containing repetitive pattern and significant image distortions.


Author(s):  
MOHD FAKHRURRAZI ISHAK ◽  
M.F. ZOLKEPLI ◽  
NURMUNIRA MUHAMMAD

This paper discusses the applications of unmanned aerial vehicle (UAV) for slope mapping and its important parameters including perimeter, area and volume of certain selected areas. Modern UAV able to take high quality image which essential for the effectiveness and nature of normal mapping output such as Digital Surface Model (DSM) and Digital Orthophoto. This photo captured by UAV will later transfer to commercial software to generate full map of study area. Three locations in Kuantan Pahang are chosen (Sungai Lembing, Politeknik Sultan Ahmad Shah ‘POLISAS’ and Pahang Matriculation College) for slope mapping. With the help of established software, the measurement (perimeter, area and volume) of selected study areas can be determined easily and considered as the main interest in this study. In addition, another outcome of this study is, this modern method of mapping will be compare to traditional method of mapping which proven to be more effective in term of low costing, low time consuming, can gather huge amount of data within short period of time, low man power needed and almost no potential risk of hazardous effect to man. In conclusion, modern technology of UAV proves to be very effective for mapping in geotechnical engineering. Slope mapping help researchers and engineers to obtain slope measurement within short period of time compare to previous traditional method.


2019 ◽  
Author(s):  
He Zhang ◽  
Emilien Aldana-Jague ◽  
François Clapuyt ◽  
Florian Wilken ◽  
Veerle Vanacker ◽  
...  

Abstract. Images captured by Unmanned aerial vehicle (UAV) and processed by Structure from Motion (SfM) photogrammetry are increasingly used in geomorphology to obtain high resolution topography data. Conventional georeferencing using ground control points (GCPs) provides reliable positioning but the geometrical accuracy critically depends on the number and spatial layout of the GCPs. This limits the time- and cost-effectiveness. Direct georeferencing of the UAV images with differential GNSS, such as PPK (Post-Processing Kinematic), may overcome these limitations by providing accurate and directly georeferenced surveys. To investigate the positional accuracy, repeatability and reproducibility of digital surface models (DSMs) generated by a UAV-PPK-SfM workflow, we carried out multiple flight missions with different camera/UAV systems. Our analysis showed that the PPK solution provides the same accuracy (mean: ca. 0.01 m, RMSE: ca. 0.03 m) as the GCP method. Furthermore, our results indicated that camera properties (i.e., focal length, resolution, sensor quality) have an impact on the accuracy but planimetric and altimetric errors remained in the range of 0.011 to 0.024 m. By analysing the repeatability of DSM construction over a time period of a few months, our study demonstrates that a UAV-PPK-SfM workflow can provide consistent, repeatable 4D data with an accuracy of a few centimetres without the use of GCPs. An uncertainty analysis showed that the minimum level of topographical change detection was ca. ±0.04 m for a high-end DSLR camera and ca. ±0.08 m for an action camera (for a flight height of 45 m). The level of detection substantially improved when reducing the UAV flight height. This study demonstrates the repeatability, reproducibility and efficiency of a PPK-SfM workflow in the context of 4D earth surface monitoring with time-laps SfM photogrammetry. As such, it should be considered as an efficient tool to monitor geomorphic processes accurately and quickly at a very high spatial and temporal resolution.


Author(s):  
J.-I. Kim ◽  
H.-C. Kim

Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.


2021 ◽  
Vol 62 (4) ◽  
pp. 38-47
Author(s):  
Long Quoc Nguyen ◽  

To evaluate the accuracy of the digital surface model (DSM) of an open-pit mine produced using photos captured by the unmanned aerial vehicle equipped with the post-processing dynamic satellite positioning technology (UAV/PPK), a DSM model of the Deo Nai open-pit coal mine was built in two cases: (1) only using images taken from UAV/PPK and (2) using images taken from UAV/PPK and ground control points (GCPs). These DSMs are evaluated in two ways: using checkpoints (CPs) and comparing the entire generated DSM with the DSM established by the electronic total station. The obtained results show that if using CPs, in case 1, the errors in horizontal and vertical dimension were 6.8 and 34.3 cm, respectively. When using two or more GCPs (case 2), the horizontal and vertical errors are at the centimetre-level (4.5 cm and 4.7 cm); if using the DSM comparison, the same accuracy as case 2 was also obtained.


UKaRsT ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 49
Author(s):  
Dian Wahyu Khaulan ◽  
Entin Hidayah ◽  
Gusfan Halik

The Digital Surface Model (DSM) is commonly used in studies on flood map modeling. The lack of accurate, high-resolution topography data has hindered flood modeling. The use of the Unmanned Aerial Vehicle (UAV) can help data acquisition with sufficient accuracy. This research aims to provide high-resolution DSM-generated maps by Ground Control Points (GCPs) settings. Improvement of the model's accuracy was pursued by distributing 20 GCPs along the edges of the study area. Agrisoft software was used to generate the DSM. The generated DSM can be used for various planning purposes. The model's accuracy is measured in Root Mean Square Error (RMSE) based on the generated DSM. The RMSE values are 0.488 m for x-coordinates and y-coordinates (horizontal direction) and 0.161 m for z-coordinates (vertical direction).


Author(s):  
S. Shen ◽  
T. Zhang ◽  
Y. Zhao ◽  
Z. Wang ◽  
F. Qian

Abstract. Benggang are characterized by deep-cut slopes with various shapes and depressions on the vast weathered crust slopes in southern China. The gully heads have been continuously collapsed and eroded to form a chair-like erosion landforms. It develops rapidly, and leads to large amounts of erosion, with the hazards of damaging land resources, destroying basic farmland, and deteriorating ecological environment. To study and manage Benggang, the primary task is to discover it. Traditional methods based on local in-situ investigations, which are not only labour-consuming but also inefficient. These methods are difficult to meet the needs of large-scale investigations of Benggang. This paper proposes a method for automatic Benggang recognition based on Ultra-High Resolution (UHR) DOM (Digital Orthophoto Map) and DSM (Digital Surface Model) obtained from UAV (Unmanned Aerial Vehicle) survey. This method adopts a Bag of Visual-Topographical Words (BoV-TW) model. The local features extracted from DOM and DSM are represented based on BoV-TW, and fused by Latent Dirichlet Allocation (LDA). Finally Support Vector Machine (SVM) is adopted as a supervised classifier to achieve high-precision automatic Benggang recognition. Experimental results prove that the total accuracy of our method can be maintained at about 95%, with recall and precision above 80% (the highest are 97.22% and 94.44%, respectively), which are significantly higher than the methods of using only DOM local features and using only BoV-TW.


2018 ◽  
Author(s):  
Servet Yaprak ◽  
Omer Yildirim ◽  
Tekin Susam ◽  
Samed Inyurt ◽  
Irfan Oguz

Abstract. This study used the Unmanned Aerial Vehicle (UAV), which was designed and produced to monitor rapidly occurring landslides in forest areas. It was aimed to determine the location data for the study area using image sensors integrated into the UAV. The study area was determined as the landslide sites located in the Taşlıçiftlik Campus of Gaziosmanpaşa University, Turkey. It was determined that landslide activities were on going in the determined study area and data was collected regarding the displacement of materials. Additionally, it was observed that data about landslides may be collected in a fast and sensitive way using UAVs, and this method is proposed as a new approach. Flights took place over a total of five different periods. In order to determine the direction and coordinate variables for the developed model, eight Ground Control Points (GCPs), whose coordinates were obtained with the GNSS method, were placed on the study area. In each period, approximately 190 photographs were investigated. The photos obtained were analysed using the PIX4D software. At the end of each period, the RMS and Ground Sample Distance (GSD) values of the GCPs were calculated. Orthomosaic and Digital Surface Models (DSM) were produced for the location and height model. The results showed that max RMS = ±3.3 cm and max GSD = 3.57 cm/1.40 in. When the first and fifth periods are compared; the highest spatial displacement value ΔS = 111.0 cm, the highest subsidence value Δh = 37.3 cm and the highest swelling value Δh = 28.6 cm as measured.


Sign in / Sign up

Export Citation Format

Share Document