scholarly journals Dynamics of Land Use and Land Cover Changes in An Arid Piedmont Plain in the Middle Reaches of the Kaxgar River Basin, Xinjiang, China

2020 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Tianfeng Wei ◽  
Donghui Shangguan ◽  
Xia Shen ◽  
Yongjian Ding ◽  
Shuhua Yi

The Kaxgar River Basin, a key section of the Tarim River Basin, is a typical ecologically fragile region that has undergone rapid changes to its spatial patterns over the preceding few decades. In particular, the expansion of salinized land has posed a severe threat to ecological restoration and economic development. This study monitored the rates and patterns of land use and land cover (LULC) changes in the plain area of Aketao County in the middle reaches of the Kaxgar River Basin. Five Landsat images (captured in 1990, 1998, 2002, 2013, and 2018) were divided into seven LULC types: built-up land, cultivated land, woodland and grassland, light-moderate salinized land, heavy salinized land, water areas, and bare land. Subsequently, their dynamic processes were analyzed. The results revealed that in 1990, the dominant LULCs were cultivated land, woodland and grassland, and bare land. Throughout the study period (from 1990 to 2018), the coverage of built-up land, cultivated land, bare land, water areas, and light-moderate salinized land increased; by contrast, that of the other LULC types decreased. The most marked LULC changes were the expansion of light-moderate salinized land (by 6.2% of the study area) and the shrinkage of woodland and grassland (by 9.4% of the study area). Almost all the analyzed LULC types underwent conversion to other types; such conversion occurred most frequently between 1998 and 2018. The conversions of woodland and grassland into cultivated land and light-moderate salinized land were the most notable phenomena. Another highly evident change was the conversion of heavy salinized land into bare land. These results revealed that the expansion of salinized land and the shrinkage of woodland and grassland in the study area were the most severe environmental changes. Therefore, ecological protection and salinization control are urgently required to enable local economic development while not exceeding the environmental carrying capacity and ensuring the safety of the “green corridor” in the lower reaches of the Kaxgar River Basin.

Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 136 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

Anthropogenic activities have substantially changed natural landscapes, especially in regions which are extremely affected by population growth and climate change such as East African countries. Understanding the patterns of land-use and land-cover (LULC) change is important for efficient environmental management, including effective water management practice. Using remote sensing techniques and geographic information systems (GIS), this study focused on changes in LULC patterns of the upstream and downstream Wami River Basin over 16 years. Multitemporal satellite imagery of the Landsat series was used to map LULC changes and was divided into three stages (2000–2006, 2006–2011, and 2011–2016). The results for the change-detection analysis and the change matrix table from 2000 to 2016 show the extent of LULC changes occurring in different LULC classes, while most of the grassland, bushland, and woodland were intensively changed to cultivated land both upstream and downstream. These changes indicate that the increase of cultivated land was the result of population growth, especially downstream, while the primary socioeconomic activity remains agriculture both upstream and downstream. In general, net gain and net loss were observed downstream, which indicate that it was more affected compared to upstream. Hence, proper management of the basin, including land use planning, is required to avoid resources-use conflict between upstream and downstream users.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Dereje Gebrie Habte ◽  
Satishkumar Belliethathan ◽  
Tenalem Ayenew

AbstractEvaluation of land use/land cover (LULC) status of watersheds is vital to environmental management. This study was carried out in Jewha watershed, which is found in the upper Awash River basin of central Ethiopia. The total catchment area is 502 km2. All climatic zones of Ethiopia, including lowland arid (‘Kola’), midland semi-arid (‘Woinadega’), humid highland (Dega) and afro alpine (‘Wurch’) can be found in the watershed. The study focused on LULC classification and change detection using GIS and remote sensing techniques by analyzing satellite images. The data preprocessing and post-process was done using multi-temporal spectral satellite data. The images were used to evaluate the temporal trends of the LULC class by considering the years 1984, 1995, 2005 and 2015. Accuracy assessment and change detection of the classification were undertaken by accounting these four years images. The land use types in the study area were categorized into six classes: natural forest, plantation forest, cultivated land, shrub land, grass land and bare land. The result shows the cover classes which has high environmental role such as forest and shrub has decreased dramatically through time with cultivated land increasing during the same period in the watershed. The forest cover in 1984 was about 6.5% of the total catchment area, and it had decreased to 4.2% in 2015. In contrast, cultivated land increased from 38.7% in 1984 to 51% in 2015. Shrub land decreased from 28 to 18% in the same period. Bare land increased due to high gully formation in the catchment. In 1984, it was 1.8% which turned to 0.6% in 1995 then increased in 2015 to 2.7%. Plantation forest was not detected in 1984. In 1995, it covers 1.5% which turned to be the same in 2015. The study clearly demonstrated that there are significant changes of land use and land cover in the catchment. The findings will allow making informed decision which will allow better land use management and environmental conservation interventions.


2020 ◽  
Vol 12 (6) ◽  
pp. 2377 ◽  
Author(s):  
John Mawenda ◽  
Teiji Watanabe ◽  
Ram Avtar

Rapid and unplanned urban growth has adverse environmental and social consequences. This is prominent in sub-Saharan Africa where the urbanisation rate is high and characterised by the proliferation of informal settlements. It is, therefore, crucial that urban land use/land cover (LULC) changes be investigated in order to enhance effective planning and sustainable growth. In this paper, the spatial and temporal LULC changes in Blantyre city were studied using the integration of remotely sensed Landsat imageries of 1994, 2007 and 2018, and a geographic information system (GIS). The supervised classification method using the support vector machine algorithm was applied to generate the LULC maps. The study also analysed the transition matrices derived from the classified map to identify prominent processes of changes for planning prioritisation. The results showed that the built-up class, which included urban structures such as residential, industrial, commercial and public installations, increased in the 24-year study period. On the contrary, bare land, which included vacant lands, open spaces with little or no vegetation, hilly clear-cut areas and other fallow land, declined over the study period. This was also the case with the vegetation class (i.e., forests, parks, permanent tree-covered areas and shrubs). The post-classification results revealed that the LULC changes during the second period (2007–2018) were faster compared to the first period (1994–2007). Furthermore, the results revealed that the increase in built-up areas systematically targeted the bare land and avoided the vegetated areas, and that the vegetated areas were systematically cleared to bare land during the study period (1994–2018). The findings of this study have revealed the pressure of human activities on the land and natural environment in Blantyre and provided the basis for sustainable urban planning and development in Blantyre city.


2021 ◽  
Vol 13 (23) ◽  
pp. 13041
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa

The 2018 Hokkaido Eastern Iburi earthquake and its landslides threaten the safety and stability of the Atsuma River basin. This study investigates land use and land cover (LULC) change by analyzing the 2015 and 2020 LULC maps of the basin, and its impact on runoff and sediment transport in the basin by using the soil and water assessment tool (SWAT) model to accurately simulate the runoff and sediment transport process. This study finds that the earthquake and landslide transformed nearly 10% of the forest into bare land in the basin. The simulation results showed that the runoff, which was simulated based on the 2020 LULC data, was slightly higher than that based on the 2015 LULC data, and the sediment transport after the earthquake is significantly higher than before. The rate of sediment transportation after the earthquake, adjusted according to the runoff, was about 3.42 times more than before. This shows that as the forest land decreased, the bare land increased. Conversely, the runoff increased slightly, whereas the sediment transport rate increased significantly in the Atsuma River basin after the earthquake. In future, active governance activities performed by humans can reduce the amount of sediment transport in the basin.


2021 ◽  
Vol 13 (18) ◽  
pp. 10263
Author(s):  
Yang Wang ◽  
Tingting Xia ◽  
Remina Shataer ◽  
Shuai Zhang ◽  
Zhi Li

Land-use and cover change is an important indicator for exploring global change trends, with in-depth research on land use and its driving factors being of particular significance in forging ecologically sustainable development. The present work used the Tarim River Basin as the study area, while the land-use transfer matrix, normalized difference vegetation index (NDVI), regional center-of-gravity model, and night-time-light remote-sensing mutual correction method were employed to explore temporal and spatial characteristics of land-use change and its driving factors. The results show the following. (1) From 1990 to 2018, land-use types in the study area significantly changed, with the cultivated land increasing by 73.9% and grassland area decreasing at a rate of 6.38 × 104 hm2 per year. (2) Areas with a natural vegetation NDVI above 0.2 appeared to follow a growth trend, with an area growth of 259.12 × 104 hm2 at a rate of 14.39 × 104 hm2/a. Average annual temperature and precipitation showed a fluctuating upward trend. (3) The center of gravity of land-use type area moved significantly. The center of gravity of cultivated land was moving in the same direction as the GDP and population center of gravity, migrating to the northeast. The migration distance of the center of gravity of cultivated land area was 212.59 km, the center of gravity migration rate of GDP was 14.44 km/a, and the population center of gravity was 812.21 km. (4) During the study period, the brightness of night lights in the study area was distributed in a circular shape, with more in the northwest and less in the southeast. Brightness gradually increased and showed an expansion trend, increasing from 0.3% to 6.3%. Among the influencing factors of spatial change of land-use change, natural factors such as climate change were related to the process of land-use/-cover change in the Tarim River Basin. Overall, human activities had the most obvious impact on land-use change.


2021 ◽  
Author(s):  
Tadele Buraka ◽  
Eyasu Elias ◽  
Alemu Lelago

Abstract Land use and land cover (LULC) is among fundamental environmental and ecological factors for monitoring, resource management, police making, planning and facilitating the development of strategies to balance conservation, development pressures, and conflicting uses. This study aimed at analyzing LULC changes that have occurred during 1988–2018 and its prediction for 2040–2060 period in Coka watershed, southern Ethiopia. LULC changes were analyzed using geographic information system and predicted by CA-Markov model. Cultivated and rural settlement land, bare land, built up area and water body have increased at an annual rate of 23.1, 2.2, 0.8 and 1.1 ha/year but forest land, bushland and grassland have decreased at an annual rate of 14.4, 4.1 and 8.7 ha/year, respectively. It is projected that cultivated and rural settlement land, bare land, built up area and water body will expand but forest land, grassland and bushland will decrease. Expansion of agriculture and deforestation showed increasing trend on both previous and predicted LULC changes with upcoming expansion of bare land and eucalyptus tree plantation due to major driving factor of population growth. This study highlights the need for well integrated landscape planning, reliable predictions for future LULC and to reduce the deterioration of environment.


2019 ◽  
Vol 11 (19) ◽  
pp. 5174 ◽  
Author(s):  
Botlhe Matlhodi ◽  
Piet K. Kenabatho ◽  
Bhagabat P. Parida ◽  
Joyce G. Maphanyane

Land use land cover (LULC) change is one of the major driving forces of global environmental change in many developing countries. In this study, LULC changes were evaluated in the Gaborone dam catchment in Botswana between 1984 and 2015. The catchment is a major source of water supply to Gaborone city and its surrounding areas. The study employed Remote Sensing and Geographical Information System (GIS) using Landsat imagery of 1984, 1995, 2005 and 2015. Image classification for each of these imageries was done through supervised classification using the Maximum Likelihood Classifier. Six major LULC categories, cropland, bare land, shrub land, built-up area, tree savanna and water bodies, were identified in the catchment. It was observed that shrub land and tree savanna were the major LULC categories between 1984 and 2005 while shrub land and cropland dominated the catchment area in 2015. The rates of change were generally faster in the 1995–2005 and 2005–2015 periods. For these periods, built-up areas increased by 59.8 km2 (108.3%) and 113.2 km2 (98.5%), respectively, while bare land increased by 50.3 km2 (161.1%) and 99.1 km2 (121.5%). However, in the overall period between 1984 and 2015, significant losses were observed for shrub land, 763 km2 (29.4%) and tree savanna, 674 km2 (71.3%). The results suggest the need to closely monitor LULC changes at a catchment scale to facilitate water resource management and to maintain a sustainable environment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Edmond Alavaisha ◽  
Victor Mbande ◽  
Lowe Börjeson ◽  
Regina Lindborg

Increasing agricultural land use intensity is one of the major land use/land cover (LULC) changes in wetland ecosystems. LULC changes have major impacts on the environment, livelihoods and nature conservation. In this study, we evaluate the impacts of investments in small-scale irrigation schemes on LULC in relation to regional development in Kilombero Valley, Tanzania. We used Remote Sensing (RS) and Geographical Information System (GIS) techniques together with interviews with Key Informants (KI) and Focus Group Discussion (FGD) with different stakeholders to assess the historical development of irrigation schemes and LULC change at local and regional scales over 3 decades. Overall, LULC differed over time and with spatial scale. The main transformation along irrigation schemes was from grassland and bushland into cultivated land. A similar pattern was also found at the regional valley scale, but here transformations from forest were more common. The rate of expansion of cultivated land was also higher where investments in irrigation infrastructure were made than in the wider valley landscape. While discussing the effects of irrigation and intensification on LULC in the valley, the KI and FGD participants expressed that local investments in intensification and smallholder irrigation may reduce pressure on natural land cover such as forest being transformed into cultivation. Such a pattern of spatially concentrated intensification of land use may provide an opportunity for nature conservation in the valley and likewise contribute positively to increased production and improve livelihoods of smallholder farmers.


2018 ◽  
Vol 50 (1) ◽  
pp. 244-261 ◽  
Author(s):  
Yunyun Li ◽  
Jianxia Chang ◽  
Lifeng Luo ◽  
Yimin Wang ◽  
Aijun Guo ◽  
...  

Abstract It is critically important to quantify the impact of land use land cover (LULC) changes on hydrology, and to understand the mechanism by which LULC changes affect the hydrological process in a river basin. To accurately simulate the hydrological process for a watershed like the Wei River Basin, where the surface characteristics are highly modified by human activities, we present an alternative approach of time-varying parameters in a hydrological model to reflect the changes in underlying land surfaces. The spatiotemporal impacts of LULC changes on watershed streamflow are quantified, and the mechanism that connects the changes in runoff generation and streamflow with LULC is explored. Results indicate the following: (1) time-varying parameters’ calibration is effective to ensure model validity when dealing with significant changes in underlying land surfaces; (2) LULC changes have significant impacts on the watershed streamflow, especially on the streamflow during the dry season; (3) the expansion of cropland is the major contributor to the reduction of surface water, causing decline in annual and dry seasonal streamflow. However, the shrinkage of woodland is the main driving force that decreases the soil water, thus contributing to a small increase in streamflow during the dry season.


Sign in / Sign up

Export Citation Format

Share Document