scholarly journals Building Virtual 3D City Model for Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad

2020 ◽  
Vol 9 (8) ◽  
pp. 476 ◽  
Author(s):  
Dušan Jovanović ◽  
Stevan Milovanov ◽  
Igor Ruskovski ◽  
Miro Govedarica ◽  
Dubravka Sladić ◽  
...  

The Smart Cities data and applications need to replicate, as faithfully as possible, the state of the city and to simulate possible alternative futures. In order to do this, the modelling of the city should cover all aspects of the city that are relevant to the problems that require smart solutions. In this context, 2D and 3D spatial data play a key role, in particular 3D city models. One of the methods for collecting data that can be used for developing such 3D city models is Light Detection and Ranging (LiDAR), a technology that has provided opportunities to generate large-scale 3D city models at relatively low cost. The collected data is further processed to obtain fully developed photorealistic virtual 3D city models. The goal of this research is to develop virtual 3D city model based on airborne LiDAR surveying and to analyze its applicability toward Smart Cities applications. It this paper, we present workflow that goes from data collection by LiDAR, through extract, transform, load (ETL) transformations and data processing to developing 3D virtual city model and finally discuss its future potential usage scenarios in various fields of application such as modern ICT-based urban planning and 3D cadaster. The results are presented on the case study of campus area of the University of Novi Sad.

Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


Author(s):  
F. Prandi ◽  
M. Soave ◽  
F. Devigili ◽  
M. Andreolli ◽  
R. De Amicis

The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). <br><br> The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. <br><br> In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. <br><br> The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.


Author(s):  
P. Würstle ◽  
T. Santhanavanich ◽  
R. Padsala ◽  
V. Coors

Abstract. This paper explains the development of a 3D city model-based Public Participation Platform as a prototype and its implementation in a real-world public participation process to redevelop the Weilimdorf area of Stuttgart city. Alongside conducting Weilimdorf’s public participation process, the goal of the mentioned public participation platform is to research citizens’ acceptance of such tools. The usage of digital tools has become more critical for participation processes. The need for social distancing expedites this change, particularly during the pandemic. Previous research frequently focuses on 2D platforms and smaller sample sizes but nevertheless shows the importance of such tools. However, with current developments in geospatial and web streaming technologies, it has become easier and faster to visualize large-scale 3D city models over the web. In this research, these technologies were used by the citizens of the Weilimdorf area to evaluate the usability of the platform and collect their feedback. The result shows that such a digital public participation platform is a valuable supplement to traditional in-person public participation methods.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2014 ◽  
Vol 3 (3) ◽  
pp. 35-49 ◽  
Author(s):  
Jan Klimke ◽  
Benjamin Hagedorn ◽  
Jürgen Döllner

Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. This paper introduces a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.


2018 ◽  
Vol 7 (9) ◽  
pp. 339 ◽  
Author(s):  
Mehmet Buyukdemircioglu ◽  
Sultan Kocaman ◽  
Umit Isikdag

3D city models have become crucial for better city management, and can be used for various purposes such as disaster management, navigation, solar potential computation and planning simulations. 3D city models are not only visual models, and they can also be used for thematic queries and analyzes with the help of semantic data. The models can be produced using different data sources and methods. In this study, vector basemaps and large-format aerial images, which are regularly produced in accordance with the large scale map production regulations in Turkey, have been used to develop a workflow for semi-automatic 3D city model generation. The aim of this study is to propose a procedure for the production of 3D city models from existing aerial photogrammetric datasets without additional data acquisition efforts and/or costly manual editing. To prove the methodology, a 3D city model has been generated with semi-automatic methods at LoD2 (Level of Detail 2) of CityGML (City Geographic Markup Language) using the data of the study area over Cesme Town of Izmir Province, Turkey. The generated model is automatically textured and additional developments have been performed for 3D visualization of the model on the web. The problems encountered throughout the study and approaches to solve them are presented here. Consequently, the approach introduced in this study yields promising results for low-cost 3D city model production with the data at hand.


Author(s):  
K. Kumar ◽  
A. Labetski ◽  
H. Ledoux ◽  
J. Stoter

<p><strong>Abstract.</strong> The Level of Detail (LOD) concept in CityGML 2.0 is meant to differentiate the multiple representations of semantic 3D city models. Despite the popularity and general acceptance of the concept by the practitioners and stakeholders in 3D city modelling, there are still some limitations. While the CityGML LOD concept is well defined for buildings, bridges, tunnels, and to some extent for roads, there is no clear definition of LODs for terrain/relief, vegetation, land use, water bodies, and generic city objects in CityGML. In addition, extensive research has been done to refine the LOD concept of CityGML for buildings but little is known on requirements and possibilities to model city object types as terrain at different LODs. To address this gap, we focus in this paper on the terrain of a 3D city model and propose a framework for modelling terrains at different LODs in CityGML. As a proof of concept of our framework, we implemented a software prototype to generate terrain models with other city features integrated (e.g. buildings) at different LODs in CityGML.</p>


Author(s):  
S. Artese

The paper describes the implementation of the 3D city model of the pedestrian area of Cosenza, which in recent years has become the Bilotti Open Air Museum (MAB). For this purpose were used both the data available (regional technical map, city maps, orthophotos) and acquired through several surveys of buildings and "Corso Mazzini" street (photos, topographic measurements, laser scanner point clouds). In addition to the urban scale model, the survey of the statues of the MAB was carried out. By means of data processing, the models of the same statues have been created, that can be used as objects within the city model. <br><br> The 3D model of the MAB open air museum has been used to implement a Web-GIS allowing the citizen's participation, understanding and suggestions. The 3D city model is intended as a new tool for urban planning, therefore it has been used both for representing the current situation of the MAB and for design purposes, by acknowledging suggestions regarding a possible different location of the statues and a new way to enjoy the museum.


2021 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Helen Eriksson ◽  
Lars Harrie

The use of 3D city models is changing from visualization to complex use cases where they act as 3D base maps. This requires links to registers and continuous updating of the city models. Still, most models never change or are recreated instead of updated. This study identifies obstacles to version management of 3D city models and proposes recommendations to overcome them, with a main focus on the municipality perspective, foremost in the planning and building processes. As part of this study, we investigate whether national building registers can control the version management of 3D city models. A case study based on investigations of standards, interviews and a review of tools is presented. The study uses an architectural model divided into four layers: data collection, building theme, city model and application. All layers require changes when implementing a new versioning method: the data collection layer requires restructuring of technical solutions and work processes, storage of the national building register requires restructuring, versioning capabilities must be propagated to the city model layer, and tools at the application layer must handle temporal information better. Strong incentives for including versioning in 3D city models are essential, as substantial investment is required to implement versioning in all the layers. Only capabilities required by applications should be implemented, as the complexity grows with the number of versioning functionalities. One outcome of the study is a recommendation to link 3D city models more closely to building registers. This enables more complex use in, e.g., building permits and 3D cadastres, and authorities can fetch required (versioning) information directly from the city model layer.


Author(s):  
G. Agugiaro

This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE) is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. <br><br> The work presented in this paper is embedded within the European Marie-Curie ITN project “CINERGY, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


Sign in / Sign up

Export Citation Format

Share Document