scholarly journals Versioning of 3D City Models for Municipality Applications: Needs, Obstacles and Recommendations

2021 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Helen Eriksson ◽  
Lars Harrie

The use of 3D city models is changing from visualization to complex use cases where they act as 3D base maps. This requires links to registers and continuous updating of the city models. Still, most models never change or are recreated instead of updated. This study identifies obstacles to version management of 3D city models and proposes recommendations to overcome them, with a main focus on the municipality perspective, foremost in the planning and building processes. As part of this study, we investigate whether national building registers can control the version management of 3D city models. A case study based on investigations of standards, interviews and a review of tools is presented. The study uses an architectural model divided into four layers: data collection, building theme, city model and application. All layers require changes when implementing a new versioning method: the data collection layer requires restructuring of technical solutions and work processes, storage of the national building register requires restructuring, versioning capabilities must be propagated to the city model layer, and tools at the application layer must handle temporal information better. Strong incentives for including versioning in 3D city models are essential, as substantial investment is required to implement versioning in all the layers. Only capabilities required by applications should be implemented, as the complexity grows with the number of versioning functionalities. One outcome of the study is a recommendation to link 3D city models more closely to building registers. This enables more complex use in, e.g., building permits and 3D cadastres, and authorities can fetch required (versioning) information directly from the city model layer.

2020 ◽  
Vol 9 (8) ◽  
pp. 476 ◽  
Author(s):  
Dušan Jovanović ◽  
Stevan Milovanov ◽  
Igor Ruskovski ◽  
Miro Govedarica ◽  
Dubravka Sladić ◽  
...  

The Smart Cities data and applications need to replicate, as faithfully as possible, the state of the city and to simulate possible alternative futures. In order to do this, the modelling of the city should cover all aspects of the city that are relevant to the problems that require smart solutions. In this context, 2D and 3D spatial data play a key role, in particular 3D city models. One of the methods for collecting data that can be used for developing such 3D city models is Light Detection and Ranging (LiDAR), a technology that has provided opportunities to generate large-scale 3D city models at relatively low cost. The collected data is further processed to obtain fully developed photorealistic virtual 3D city models. The goal of this research is to develop virtual 3D city model based on airborne LiDAR surveying and to analyze its applicability toward Smart Cities applications. It this paper, we present workflow that goes from data collection by LiDAR, through extract, transform, load (ETL) transformations and data processing to developing 3D virtual city model and finally discuss its future potential usage scenarios in various fields of application such as modern ICT-based urban planning and 3D cadaster. The results are presented on the case study of campus area of the University of Novi Sad.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2014 ◽  
Vol 3 (3) ◽  
pp. 35-49 ◽  
Author(s):  
Jan Klimke ◽  
Benjamin Hagedorn ◽  
Jürgen Döllner

Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. This paper introduces a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.


2020 ◽  
Vol 9 (9) ◽  
pp. 502 ◽  
Author(s):  
Francesca Noardo ◽  
Lars Harrie ◽  
Ken Arroyo Ohori ◽  
Filip Biljecki ◽  
Claire Ellul ◽  
...  

The integration of 3D city models with Building Information Models (BIM), coined as GeoBIM, facilitates improved data support to several applications, e.g., 3D map updates, building permits issuing, detailed city analysis, infrastructure design, context-based building design, to name a few. To solve the integration, several issues need to be tackled and solved, i.e., harmonization of features, interoperability, format conversions, integration of procedures. The GeoBIM benchmark 2019, funded by ISPRS and EuroSDR, evaluated the state of implementation of tools addressing some of those issues. In particular, in the part of the benchmark described in this paper, the application of georeferencing to Industry Foundation Classes (IFC) models and making consistent conversions between 3D city models and BIM are investigated, considering the OGC CityGML and buildingSMART IFC as reference standards. In the benchmark, sample datasets in the two reference standards were provided. External volunteers were asked to describe and test georeferencing procedures for IFC models and conversion tools between CityGML and IFC. From the analysis of the delivered answers and processed datasets, it was possible to notice that while there are tools and procedures available to support georeferencing and data conversion, comprehensive definition of the requirements, clear rules to perform such two tasks, as well as solid technological solutions implementing them, are still lacking in functionalities. Those specific issues can be a sensible starting point for planning the next GeoBIM integration agendas.


2018 ◽  
Vol 7 (9) ◽  
pp. 339 ◽  
Author(s):  
Mehmet Buyukdemircioglu ◽  
Sultan Kocaman ◽  
Umit Isikdag

3D city models have become crucial for better city management, and can be used for various purposes such as disaster management, navigation, solar potential computation and planning simulations. 3D city models are not only visual models, and they can also be used for thematic queries and analyzes with the help of semantic data. The models can be produced using different data sources and methods. In this study, vector basemaps and large-format aerial images, which are regularly produced in accordance with the large scale map production regulations in Turkey, have been used to develop a workflow for semi-automatic 3D city model generation. The aim of this study is to propose a procedure for the production of 3D city models from existing aerial photogrammetric datasets without additional data acquisition efforts and/or costly manual editing. To prove the methodology, a 3D city model has been generated with semi-automatic methods at LoD2 (Level of Detail 2) of CityGML (City Geographic Markup Language) using the data of the study area over Cesme Town of Izmir Province, Turkey. The generated model is automatically textured and additional developments have been performed for 3D visualization of the model on the web. The problems encountered throughout the study and approaches to solve them are presented here. Consequently, the approach introduced in this study yields promising results for low-cost 3D city model production with the data at hand.


Author(s):  
K. Kumar ◽  
A. Labetski ◽  
H. Ledoux ◽  
J. Stoter

<p><strong>Abstract.</strong> The Level of Detail (LOD) concept in CityGML 2.0 is meant to differentiate the multiple representations of semantic 3D city models. Despite the popularity and general acceptance of the concept by the practitioners and stakeholders in 3D city modelling, there are still some limitations. While the CityGML LOD concept is well defined for buildings, bridges, tunnels, and to some extent for roads, there is no clear definition of LODs for terrain/relief, vegetation, land use, water bodies, and generic city objects in CityGML. In addition, extensive research has been done to refine the LOD concept of CityGML for buildings but little is known on requirements and possibilities to model city object types as terrain at different LODs. To address this gap, we focus in this paper on the terrain of a 3D city model and propose a framework for modelling terrains at different LODs in CityGML. As a proof of concept of our framework, we implemented a software prototype to generate terrain models with other city features integrated (e.g. buildings) at different LODs in CityGML.</p>


Author(s):  
R. Piepereit ◽  
A. Beuster ◽  
M. von der Gruen ◽  
U. Voß ◽  
M. Pries ◽  
...  

<p><strong>Abstract.</strong> Virtual reality (VR) technologies are used more and more in product development processes and are upcoming in urban planning systems as well. They help to visualize big amounts of data in self-explanatory way and improve people’s interpretation of results. In this paper we demonstrate the process of visualizing a city model together with wind simulation results in a collaborative VR system. In order to make this kind of visualization possible a considerable amount of preliminary work is necessary: healing and simplification of building models, conversion of these data into an appropriate CAD-format and numerical simulation of wind flow around the buildings. The data obtained from these procedures are visualized in a collaborative VR-System. In our approach CityGML models in the LoD (Level of Detail) 1, 2 and 3 can be used as an input. They are converted into the STEP format, commonly used in CAD for simulation and representation. For this publication we use an exemplary LoD1 model from the district Stöckach-Stuttgart. After preprocessing the model, the results are combined with those of an air flow simulation and afterwards depicted in a VR system with a HTC Vive as well as in a CAVE and a Powerwall. This provides researchers, city planners and technicians with the means to flexibly and interactively exchange simulation results in a virtual environment.</p>


2020 ◽  
Author(s):  
Yiheng Chen ◽  
Lu Zhuo ◽  
Dawei Han

&lt;p&gt;Cities are the place where a large portion of the population lives. Traditional urban planning models usually based on separate functions of a city or region. A coherent city model is a newly developed tool to take the interaction between each section into consideration. The city model in this paper focuses on the water system infrastructure because flood risk is becoming an increasingly challenging issue with the rapid urbanization and extreme weather under climate change. The paper aims to give a timely review of the development of city models from various originates. Then, it introduces a number of popular modelling techniques that have been demonstrated useful or may be of potential usage for city modelling purpose, such as GIS, CIM, ABM, etc. The review of model techniques provides the readers with suggestions on how to choose the technique to deal with their own research question. After that, this paper also points out the possible future directions of city models with challenges requiring further research efforts.&lt;/p&gt;


Author(s):  
L. Harrie ◽  
J. Kanters ◽  
K. Mattisson ◽  
P. Nezval ◽  
P.-O. Olsson ◽  
...  

Abstract. In order to meet the increasing needs of housing and services in urban areas, cities are densified. When densifying a city, it is important to provide good living conditions while maintaining a low environmental impact. To ensure this, the urban planning process should include simulations of e.g. noise and daylight conditions. In this paper we describe a newly started projected directed towards the need for quality-assured and harmonised input data to the simulations, in the form of 3D city models. The first part of the paper includes the background and research questions of the project and in the second part a tool for daylight simulations on neighbourhood level is introduced, a tool that will be utilized for evaluating the 3D city model design.


Author(s):  
H. Eriksson ◽  
L. Harrie ◽  
J. M. Paasch

<p><strong>Abstract.</strong> The need for digital building information is increasing, both in the form of 3D city models (as geodata) and of more detailed building information models (BIM). BIM models are mainly used in the architecture, engineering and construction industry, but have recently become interesting also for municipalities. The overall aim of this paper is to study one way of dividing a building, namely the division of a building into building parts in both 3D city models and in BIM models. The study starts by an inventory of how building parts are defined in 3D city model standards (CityGML, the INSPIRE building specification and a Swedish national specification for buildings) and in BIM models (Industry Foundation Classes, IFC). The definition of building parts in these specifications are compared and evaluated. The paper also describes potential applications for the use of building parts, on what grounds a building could be divided into building parts, advantages and disadvantages of having building parts and what consequences it can have on the usage of the building information. One finding is that building parts is defined similar, but not identical in the studied geodata specifications and there are no requirements, only recommendations on how buildings should be divided into building parts. This can complicate the modelling, exchange and reuse of building information, and in a longer perspective, it would be desirable to have recommendations of how to define and use building parts in for example a national context.</p>


Sign in / Sign up

Export Citation Format

Share Document