scholarly journals Cloud Point Extraction of Parabens Using Non-Ionic Surfactant with Cylodextrin Functionalized Ionic Liquid as a Modifier

2013 ◽  
Vol 14 (12) ◽  
pp. 24531-24548 ◽  
Author(s):  
Md Noorashikin ◽  
Muggundha Raoov ◽  
Sharifah Mohamad ◽  
Mhd Abas
2020 ◽  
Vol 1 (1) ◽  
pp. 20-27

Cloud Point Extraction (CPE) as an effective method for pre-concentration and separation of cadmium from aqueous solution is widely utilized. This study involves a surfactant mediated CPE procedure in order to remove cadmium from waste water using Polythiophene nanoparticle and Triton X- 100 as a non – ionic surfactant. Polythiophene – coated iron nanoparticles was successfully synthesized with novel method and as a super magnetic nano-particles (MNPs) for cadmium removal from aqueous solution was evaluated. Polythophene nano-particles emulsifying method have been synthesized and fabricated. Fabricated nano-particle was characterized by Fourier-transform infrared spectroscopy (FTIR), and analysed transmission electron microscopy (SEM). Effects of pH, buffer volume, extraction time, temperature, amount of nano-particle were essentially investigated. To reach in optimum conditions, related experiments were replicated and accomplished as well. For removal of cadmium by CPE approach the optimization conditions were gained at pH = 7 , volume of buffer acid 1.5 millilitre , electrolyte concentration (NaCl) of 10 -3 mole L-1 , Trinton concentration 5 %, cloud point temperature 80 0 C , extraction time 40 minutes, and 5 mg of modified polythiophene nano-particle. The calibration graph was liner with a correlation coefficient of 0. 9984 and represents appropriate liner correlation with an amount and concentration. The results revealed that 5 gram of modified nanoparticle can significantly increase the efficiency of cadmium removal.


2017 ◽  
Vol 17 (5) ◽  
pp. 1347-1355
Author(s):  
Cennet Karadaş ◽  
Derya Kara

A simple, efficient and inexpensive ligandless cloud point extraction method was developed for the preconcentration of trace amounts of iron from natural water samples, followed by flame atomic absorption spectrometry detection. The proposed method is based on the extraction of Fe(III) ions at pH 7.0 using the non-ionic surfactant Triton X-114 without the addition of any chelating ligand. The effect of parameters influencing the extraction efficiency such as sample pH, concentration of surfactant, incubation temperature and time, concentration of NaCl and sample volume were investigated and optimized. The effect of potentially interfering ions on the recovery of iron was also examined. Under optimum conditions, the detection limit (3σ) was 0.95 μg L−1 for Fe using a sample volume of 10 mL. A preconcentration factor of 20 was achieved. The accuracy of the method was checked through the analysis of certified reference materials (SLRS-5 river water, SPS-SW2 Batch 127 surface water) and spiked water samples. The percentage recovery values for spiked water samples were between 92% and 101%.


Sign in / Sign up

Export Citation Format

Share Document