scholarly journals cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

2018 ◽  
Vol 19 (3) ◽  
pp. 801 ◽  
Author(s):  
Nadja Bork ◽  
Viacheslav Nikolaev
2018 ◽  
Vol 217 (6) ◽  
pp. 2047-2058 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Carlo Giovanni Quintanilla ◽  
Ting-Sung Hsieh ◽  
Jen Liou

The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER–plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) after ER Ca2+ depletion. STIM1 also interacts with EB1 and dynamically tracks microtubule (MT) plus ends. Nevertheless, the role of STIM1–EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with a synthetic construct approach, we found that EB1 binding constitutes a trapping mechanism restricting STIM1 targeting to ER–PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. By trapping STIM1 molecules at dynamic contacts between the ER and MT plus ends, EB1 binding delayed STIM1 translocation to ER–PM junctions during ER Ca2+ depletion and prevented excess SOCE and ER Ca2+ overload. Our study suggests that STIM1–EB1 interaction shapes the kinetics and amplitude of local SOCE in cellular regions with growing MTs and contributes to spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.


2009 ◽  
Vol 37 (5) ◽  
pp. 1056-1060 ◽  
Author(s):  
Marek Cebecauer ◽  
Dylan M. Owen ◽  
Anna Markiewicz ◽  
Anthony I. Magee

Multimolecular assemblies on the plasma membrane exhibit dynamic nature and are often generated during the activation of eukaryotic cells. The role of lipids and their physical properties in helping to control the existence of these structures is discussed. Technological improvements for live cell imaging of membrane components are also reviewed.


2011 ◽  
Vol 71 ◽  
pp. e213
Author(s):  
Takashi Tsuboi ◽  
Yasunori Mori ◽  
Hideki Matsui ◽  
Ryo Aoki ◽  
Manami Oya ◽  
...  

2005 ◽  
Vol 168 (5) ◽  
pp. 697-703 ◽  
Author(s):  
Yan He ◽  
Franto Francis ◽  
Kenneth A. Myers ◽  
Wenqian Yu ◽  
Mark M. Black ◽  
...  

Recent studies have shown that the transport of microtubules (MTs) and neurofilaments (NFs) within the axon is rapid, infrequent, asynchronous, and bidirectional. Here, we used RNA interference to investigate the role of cytoplasmic dynein in powering these transport events. To reveal transport of MTs and NFs, we expressed EGFP-tagged tubulin or NF proteins in cultured rat sympathetic neurons and performed live-cell imaging of the fluorescent cytoskeletal elements in photobleached regions of the axon. The occurrence of anterograde MT and retrograde NF movements was significantly diminished in neurons that had been depleted of dynein heavy chain, whereas the occurrence of retrograde MT and anterograde NF movements was unaffected. These results support a cargo model for NF transport and a sliding filament model for MT transport.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yasmin ElMaghloob ◽  
Begoña Sot ◽  
Michael J McIlwraith ◽  
Esther Garcia ◽  
Tamas Yelland ◽  
...  

The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here, we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.


2014 ◽  
Vol 47 (4) ◽  
pp. 185-188 ◽  
Author(s):  
Toshiyuki Ozawa ◽  
Sho Hiroyasu ◽  
Daisuke Tsuruta

Nano Letters ◽  
2010 ◽  
Vol 10 (9) ◽  
pp. 3684-3691 ◽  
Author(s):  
Anna M. Sauer ◽  
Axel Schlossbauer ◽  
Nadia Ruthardt ◽  
Valentina Cauda ◽  
Thomas Bein ◽  
...  

2008 ◽  
Vol 105 (46) ◽  
pp. 17978-17981 ◽  
Author(s):  
Margaret Clarke ◽  
Lucinda Maddera ◽  
Robin L. Harris ◽  
Philip M. Silverman

Bacteria have evolved numerous mechanisms for cell–cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For Gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize the dynamics of F-pili (conjugative pili encoded by the F plasmid of Escherichia coli). We establish that F-pili normally undergo cycles of extension and retraction in the absence of any obvious triggering event, such as contact with a recipient cell. When made, such contacts are able to survive the shear forces felt by bacteria in liquid media. Our data emphasize the role of F-pilus flexibility both in efficiently sampling a large volume surrounding donor cells in liquid culture and in establishing and maintaining cell–cell contact. Additionally and unexpectedly, we infer that extension and retraction are accompanied by rotation about the long axis of the filament.


Sign in / Sign up

Export Citation Format

Share Document