scholarly journals Deletion of Bmal1 Prevents Diet-Induced Ectopic Fat Accumulation by Controlling Oxidative Capacity in the Skeletal Muscle

2018 ◽  
Vol 19 (9) ◽  
pp. 2813 ◽  
Author(s):  
Taira Wada ◽  
Yuya Ichihashi ◽  
Emi Suzuki ◽  
Yasuhiro Kosuge ◽  
Kumiko Ishige ◽  
...  

Brain and muscle arnt-like protein 1 (BMAL1), is a transcription factor known to regulate circadian rhythm. BMAL1 was originally characterized by its high expression in the skeletal muscle. Since the skeletal muscle is the dominant organ system in energy metabolism, the possible functions of BMAL1 in the skeletal muscle include the control of metabolism. Here, we established that its involvement in the regulation of oxidative capacity in the skeletal muscle. Muscle-specific Bmal1 KO mice (MKO mice) displayed several physiological hallmarks for the increase of oxidative capacity. This included increased energy expenditure and oxygen consumption, high running endurance and resistance to obesity with improved metabolic profiles. Also, the phosphorylation status of AMP-activated protein kinase and its downstream signaling substrate acetyl-CoA carboxylase in the MKO mice were substantially higher than those in the Bmal1flox/flox mice. In addition, biochemical and histological studies confirmed the substantial activation of oxidative fibers in the skeletal muscle of the MKO mice. The mechanism includes the regulation of Cacna1s expression, followed by the activation of calcium—nuclear factor of activated T cells (NFAT) axis. We thus conclude that BMAL1 is a critical regulator of the muscular fatty acid level under nutrition overloading and that the mechanism involves the control of oxidative capacity.

2007 ◽  
Vol 293 (5) ◽  
pp. R2059-R2069 ◽  
Author(s):  
Steven D. Mason ◽  
Helene Rundqvist ◽  
Ioanna Papandreou ◽  
Roger Duh ◽  
Wayne J. McNulty ◽  
...  

During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress. The primary transcriptional response factor for acclimation to hypoxic stress is hypoxia-inducible factor-1α (HIF-1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild-type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. These data demonstrate that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.


2005 ◽  
Vol 98 (4) ◽  
pp. 1221-1227 ◽  
Author(s):  
D. S. Rubink ◽  
W. W. Winder

AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 μM and at palmitoyl-CoA concentrations ranging from 0 to 100 μM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 ± 0.25 to 0.85 ± 0.13 μM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 μM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.


2003 ◽  
Vol 95 (4) ◽  
pp. 1523-1530 ◽  
Author(s):  
Michael J. Christopher ◽  
Zhi-Ping Chen ◽  
Christian Rantzau ◽  
Bruce E. Kemp ◽  
Frank P. Alford

The effect of diabetes and exercise on skeletal muscle (SkM) AMP-activated protein kinase (AMPK)α1 and -α2 activities and site-specific phosphorylation of acetyl-CoA carboxylase was examined in the same six dogs before alloxan (35 mg/kg)-induced diabetes (C) and after 4-5 wk of suboptimally controlled hyperglycemic and hypoinsulinemic diabetes (DHG) in the presence and absence of 300-min phlorizin (50 μg·kg-1·min-1)-induced “normoglycemia” (DNG). In each study, the dog underwent a 150-min [3-3H]glucose infusion period, followed by a 30-min treadmill exercise test (60-70% maximal oxygen capacity) to measure the rate of glucose disposal into peripheral tissues (Rdtissue). SkM biopsies were taken from the thigh (vastus lateralis) before and immediately after exercise. In the C and DHG states, the rise in plasma free fatty acids (FFA) with exercise (∼40%) was similar. In the DNG group, preexercise FFA were significantly higher, but the absolute rise in FFA with exercise was similar. However, the exercise-induced increment in Rdtissue was significantly blunted (by ∼40-50%) in the DNG group compared with the other states. In SkM, preexercise AMPKα1 and -α2 activities were significantly elevated (by ∼60-125%) in both diabetic states, but unlike the C group these activities did not rise further with exercise. Additionally, preexercise acetyl-CoA carboxylase phosphorylation in both diabetic states was elevated by ∼70-80%, but the increases with exercise were similar to the C group. Preexercise AMPKα1 and -α2 activities were negatively correlated with Rdtissue during exercise for the combined groups (both P < 0.02). In conclusion, the elevated preexercise SkM AMPKα1 and -α2 activities contribute to the ongoing basal supply of glucose and fatty acid metabolism in suboptimally controlled hypoinsulinemic diabetic dogs; but whether they also play a permissive role in the metabolic stress response to exercise remains uncertain.


1997 ◽  
Vol 273 (6) ◽  
pp. E1107-E1112 ◽  
Author(s):  
G. F. Merrill ◽  
E. J. Kurth ◽  
D. G. Hardie ◽  
W. W. Winder

5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) has previously been reported to be taken up into cells and phosphorylated to form ZMP, an analog of 5′-AMP. This study was designed to determine whether AICAR can activate AMP-activated protein kinase (AMPK) in skeletal muscle with consequent phosphorylation of acetyl-CoA carboxylase (ACC), decrease in malonyl-CoA, and increase in fatty acid oxidation. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red blood cells, 200 μU/ml insulin, and 10 mM glucose with or without AICAR (0.5–2.0 mM). Perfusion with medium containing AICAR was found to activate AMPK in skeletal muscle, inactivate ACC, and decrease malonyl-CoA. Hindlimbs perfused with 2 mM AICAR for 45 min exhibited a 2.8-fold increase in fatty acid oxidation and a significant increase in glucose uptake. No difference was observed in oxygen uptake in AICAR vs. control hindlimb. These results provide evidence that decreases in muscle content of malonyl-CoA can increase the rate of fatty acid oxidation.


1996 ◽  
Vol 270 (2) ◽  
pp. E299-E304 ◽  
Author(s):  
W. W. Winder ◽  
D. G. Hardie

Malonyl-CoA, an inhibitor of fatty acid oxidation in skeletal muscle mitochondria, decreases in rat skeletal muscle during exercise or in response to electrical stimulation. Regulation of rat skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme that synthesizes malonyl-CoA, was studied in vitro and in vivo. Avidin-Sepharose affinity-purified ACC from hindlimb skeletal muscle was phosphorylated by purified liver AMP-activated protein kinase with a concurrent decrease in ACC activity. AMP-activated protein kinase was quantitated in resuspended ammonium sulfate precipitates of the fast-twitch red (type IIa fibers) region of the quadriceps muscle. Rats running on a treadmill at 21 m/min up a 15% grade show a 2.4-fold activation of AMP-activated protein kinase concurrently with a marked decrease in ACC activity in the resuspended ammonium sulfate precipitates at all citrate concentrations ranging from 0 to 20 mM. Malonyl-CoA decreased from a resting value of 1.85 +/- 0.29 to 0.50 +/- 0.09 nmol/g in red quadriceps muscle after 30 min of treadmill running. The activation of the AMP-activated protein kinase with consequent phosphorylation and inactivation of ACC may be one of the primary events in the control of malonyl-CoA and hence fatty acid oxidation during exercise.


2006 ◽  
Vol 175 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Mara Fornaro ◽  
Peter M. Burch ◽  
Wentian Yang ◽  
Lei Zhang ◽  
Claire E. Hamilton ◽  
...  

The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle–specific deletion of the tyrosine phosphatase SHP-2 (muscle creatine kinase [MCK]–SHP-2 null) exhibited a reduction in both myofiber size and type I slow myofiber number. We found that interleukin-4, an NFAT-regulated cytokine known to stimulate myofiber growth, was reduced in its expression in skeletal muscles of MCK–SHP-2–null mice. When SHP-2 was deleted during the differentiation of primary myoblasts, NFAT transcriptional activity and myotube multinucleation were impaired. Finally, SHP-2 coupled myotube multinucleation to an integrin-dependent pathway and activated NFAT by stimulating c-Src. Thus, SHP-2 transduces extracellular matrix stimuli to intracellular signaling pathways to promote skeletal muscle growth.


2001 ◽  
Vol 12 (5) ◽  
pp. 1499-1508 ◽  
Author(s):  
Carol E. Torgan ◽  
Mathew P. Daniels

Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and ∼10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN–nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells.


2004 ◽  
Vol 287 (3) ◽  
pp. E553-E557 ◽  
Author(s):  
Lubna Al-Khalili ◽  
Anna Krook ◽  
Juleen R. Zierath ◽  
Gregory D. Cartee

Exposing isolated rat skeletal muscle to 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside [AICAR, a pharmacological activator of AMP-activated protein kinase (AMPK)] plus serum leads to a subsequent increase in insulin-stimulated glucose transport (Fisher JS, Gao J, Han DH, Holloszy JO, and Nolte LA. Am J Physiol Endocrinol Metab 282: E18–E23, 2002). Our goal was to determine whether preincubation of primary human skeletal muscle cells with human serum and AICAR (Serum+AICAR) would also induce a subsequent elevation in insulin-stimulated glucose uptake. Cells were preincubated for 1 h under 4 conditions: 1) without AICAR or serum (Control), 2) with serum, 3) with AICAR, or 4) with Serum+AICAR. Some cells were then collected for immunoblot analysis to assess phosphorylation of AMPK (pAMPK) and its substrate acetyl-CoA carboxylase (ACC). Other cells were incubated for an additional 4 h without AICAR or serum and then used to measure basal or insulin-stimulated 2-deoxyglucose (2-DG) uptake. Level of pAMPK was increased ( P < 0.01) for myotubes exposed to Serum+AICAR vs. all other groups. Phosphorylated ACC (pACC) levels were higher for both Serum+AICAR ( P < 0.05) and AICAR ( P < 0.05) vs. Control and Serum groups. Basal ( P < 0.05) and 1.2 nM insulin-stimulated ( P < 0.005) 2-DG uptake was higher for Serum vs. all other preincubation conditions at equal insulin concentration. Regardless of insulin concentration (0, 1.2, or 18 nM), 2-DG was unaltered in cells preincubated with Serum+AICAR vs. Control cells. In contrast to results with isolated rat skeletal muscle, increasing the pAMPK and pACC in human myocytes via preincubation with Serum+AICAR was insufficient to lead to a subsequent enhancement in insulin-stimulated glucose uptake.


2014 ◽  
Vol 306 (4) ◽  
pp. C354-C363 ◽  
Author(s):  
T. L. Scheffler ◽  
J. M. Scheffler ◽  
S. Park ◽  
S. C. Kasten ◽  
Y. Wu ◽  
...  

An inverse relationship between skeletal muscle fiber cross-sectional area (CSA) and oxidative capacity suggests that muscle fibers hypertrophy at the expense of oxidative capacity. Therefore, our objective was to utilize pigs possessing mutations associated with increased oxidative capacity [AMP-activated protein kinase (AMPKγ3R200Q)] or fiber hypertrophy [ryanodine receptor 1 (RyR1R615C)] to determine if these events occur in parallel. Longissimus muscle was collected from wild-type (control), AMPKγ3R200Q, RyR1R615C, and AMPKγ3R200Q-RyR1R615Cpigs. Regardless of AMPK genotype, RyRR615Cincreased fiber CSA by 35%. In contrast, AMPKγ3R200Qpig muscle exhibited greater citrate synthase and β-hydroxyacyl CoA dehydrogenase activity. Isolated mitochondria from AMPKγ3R200Qmuscle had greater maximal, ADP-stimulated oxygen consumption rate. Additionally, AMPKγ3R200Qmuscle contained more (∼50%) of the mitochondrial proteins succinate dehydrogenase and cytochrome c oxidase and more mitochondrial DNA. Surprisingly, RyR1R615Cincreased mitochondrial proteins and DNA, but this was not associated with improved oxidative capacity, suggesting that altered energy metabolism in RyR1R615Cmuscle influences mitochondrial proliferation and protein turnover. Thus pigs that possess both AMPKγ3R200Qand RyRR615Cexhibit increased muscle fiber CSA as well as greater oxidative capacity. Together, our findings support the notion that hypertrophy and enhanced oxidative capacity can occur simultaneously in skeletal muscle and suggest that the signaling mechanisms controlling these events are independently regulated.


Sign in / Sign up

Export Citation Format

Share Document