scholarly journals BCPA {N,N′-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1

2018 ◽  
Vol 19 (11) ◽  
pp. 3436 ◽  
Author(s):  
Eugene Cho ◽  
Jin-Kyung Lee ◽  
Jee-Young Lee ◽  
Zhihao Chen ◽  
Sun-Hee Ahn ◽  
...  

Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that N,N′-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity. In addition, BCPA attenuated the reduction of Pin1 protein during osteoclast differentiation without changing Pin1 mRNA levels. BCPA repressed the expression of osteoclast-related genes, such as DC-STAMP and osteoclast-associated receptor (OSCAR), without altering the mRNA expression of nuclear factor of activated T cells (NFATc1) and cellular oncogene fos (c-Fos). Furthermore, Tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells were significantly decreased by BCPA treatment compared to treatment with the Pin1 inhibitor juglone. These data suggest that BCPA can inhibit osteoclastogenesis by regulating the expression of the DC-STAMP osteoclast fusion protein by attenuating Pin1 reduction. Therefore, BCPA may be used to treat osteoporosis.

2020 ◽  
Vol 52 (4) ◽  
pp. 691-701 ◽  
Author(s):  
Eun Mi Go ◽  
Ju Hee Oh ◽  
Jin Hee Park ◽  
Soo Young Lee ◽  
Na Kyung Lee

Abstract Spi-C is an SPI-group erythroblast transformation-specific domain transcription factor expressed during B-cell development. Here, we report that Spi-C is a novel receptor activator of nuclear factor-κB ligand (RANKL)-inducible protein that positively regulates RANKL-mediated osteoclast differentiation and function. Knockdown of Spi-C decreased the expression of RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1, receptor activator of nuclear factor-κB (RANK), and tartrate-resistant acid phosphatase (TRAP), resulting in a marked decrease in the number of TRAP-positive multinucleated cells. Spi-C-transduced bone marrow-derived monocytes/macrophages (BMMs) displayed a significant increase in osteoclast formation in the presence of RANKL. In addition, Spi-C-depleted cells failed to show actin ring formation or bone resorption owing to a marked reduction in the expression of RANKL-mediated dendritic cell-specific transmembrane protein and the d2 isoform of vacuolar (H+) ATPase V0 domain, which are known osteoclast fusion-related genes. Interestingly, RANKL stimulation induced the translocation of Spi-C from the cytoplasm into the nucleus during osteoclastogenesis, which was specifically blocked by inhibitors of p38 mitogen-activated protein kinase (MAPK) or PI3 kinase. Moreover, Spi-C depletion prevented RANKL-induced MAPK activation and the degradation of inhibitor of κB-α (IκBα) in BMMs. Collectively, these results suggest that Spi-C is a novel positive regulator that promotes both osteoclast differentiation and function.


2020 ◽  
Vol 21 (18) ◽  
pp. 6971
Author(s):  
Chia-Hsin Wu ◽  
Ching-Huei Ou ◽  
I-Chuan Yen ◽  
Shih-Yu Lee

Astronauts suffer from 1–2% bone loss per month during space missions. Targeting osteoclast differentiation has been regarded as a promising strategy to prevent osteoporosis in microgravity (μXg). 4-acetylantroquinonol B (4-AAQB), a ubiquinone from Antrodia cinnamomea, has shown anti-inflammatory and anti-hepatoma activities. However, the effect of 4-AAQB on μXg-induced osteoclastogenesis remains unclear. In this study, we aimed to explore the mechanistic impact of 4-AAQB on osteoclast formation under μXg conditions. The monocyte/macrophage-like cell line RAW264.7 was exposed to simulated μXg (Rotary Cell Culture System; Synthecon, Houston, TX, USA) for 24 h and then treated with 4-AAQB or alendronate (ALN) and osteoclast differentiation factor receptor activator of nuclear factor kappa-B ligand (RANKL). Osteoclastogenesis, bone resorption activity, and osteoclast differentiation-related signaling pathways were analyzed using tartrate-resistant acid phosphatase (TRAP) staining, actin ring fluorescent staining, bone resorption, and western blotting assays. Based on the results of TRAP staining, actin ring staining, and bone resorption assays, we found that 4-AAQB significantly inhibited μXg-induced osteoclast differentiation. The critical regulators of osteoclast differentiation, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, and dendritic cell-specific transmembrane protein (DC-STAMP), were consistently decreased. Meanwhile, osteoclast apoptosis and cell cycle arrest were also observed along with autophagy suppression. Interestingly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) showed similar effects to 4-AAQB. In conclusion, we suggest that 4-AAQB may serve as a potential agent against μXg-induced osteoclast formation.


2021 ◽  
Vol 22 (5) ◽  
pp. 2303
Author(s):  
Liang Li ◽  
Ming Yang ◽  
Saroj Kumar Shrestha ◽  
Hyoungsu Kim ◽  
William H. Gerwick ◽  
...  

Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.


2009 ◽  
Vol 4 (4) ◽  
pp. 543-548 ◽  
Author(s):  
Zhi-Yong Zeng ◽  
Jun-Min Chen

AbstractOsteoclasts are known to be formed by fusion of circulating mononuclear precursor cells which originate from haematopoietic stem cells. The precise mechanisms regulating the cell-cell fusion of these circulating cells to multinucleated osteoclasts remain unclear. In the present study, human peripheral blood mononuclear cells (PBMNCs) from healthy donors were treated with the macrophagecolony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL) to induce osteoclast differentiation. Osteoclast formation and resorption activity were investigated through the use of tartrate-resistant acid phosphatase (TRAP) staining and lacunar resorption on dentine slices respectively. Real-time reverse-transcription polymerase chain reaction (PCR) was used to detect expression of dendritic cell-specific transmembrane protein (DC-STAMP) in these cells. The results showed that under the treatment of M-CSF and RANKL, PBMNCs differentiated into multinucleated osteoclasts through cell-cell fusion of mononucleated cells. These osteoclasts were TRAP positive and capable of resorbing the bone. Expression of DC-STAMP was much higher in the cells treated with both M-CSF and RANKL than those treated with M-CSF alone. We concluded that human PBMNCs might differentiate into active osteoclasts under certain conditions and the DC-STAMP, which is believed critical for osteoclast development, will be a possible therapeutic target for osteoclast related diseases in future.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yongjin Lee ◽  
Jung-Eun Kim ◽  
Kwang-Jin Kim ◽  
Seung-Sik Cho ◽  
Young-Jin Son

Osteoporosis is a metabolic disorder that decreases the stability against fractures of the spine, femur, and radius by weakening the strength and integrity of bones. Receptor activator of nuclear factor-kappa B ligand signaling ultimately activated nuclear factor-activated T cells c1, a major transcription factor for osteoclast formation. This study researched the effects of Corylopsis coreana (C. coreana) Uyeki flos extracts on the antiosteoclastic potential of macrophages and the phytochemicals contained therein. The alcoholic extract of C. coreana Uyeki flos inhibited the differentiation of osteoclast. We carried out the experiments of the pattern of differentiation of osteoclasts based on the alcoholic percentage of extracts. Among them, 80% alcoholic extract showed the highest inhibitory effect. The alcoholic extract was composed of phytochemicals such as bergenin, quercetin, and quercitrin. This extract inhibited not only mRNA expression levels of NFATc1, osteoclast-associated receptor (OSCAR), cathepsin K, and tartrate-resistant acid phosphatase (TRAP), but also the translational expression of NFATc1. The inhibitory effect for osteoclast differentiation of the alcoholic extract was confirmed using the resorption pit assay. This is the first scientific report of the antiosteoclastic effects of C. coreana Uyeki flos extract, which can be applied therapeutically for the treatment of osteoporosis.


2015 ◽  
Vol 43 (04) ◽  
pp. 715-729 ◽  
Author(s):  
Sung-Jun Ahn ◽  
Jong Min Baek ◽  
Yoon-Hee Cheon ◽  
Sun-Hyang Park ◽  
Myeung Su Lee ◽  
...  

Angelica tenuissima has been traditionally used in oriental medicine for its therapeutic effects in headache, toothache, and flu symptoms. It also exerts anti-inflammatory activity via the inhibition of the expression of cyclooxygenase-2 (COX-2). However, the effect of Angelica tenuissima on osteoclast differentiation has not been identified until recently. In this study, we first confirmed that Angelica tenuissima water extract (ATWE) significantly interrupted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in a dose-dependent manner without any cytotoxicity. Next, we clarified the underlying mechanisms linking the suppression effects of ATWE on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. At the molecular level, ATWE induced the dephosphorylation of c-Jun N-terminal kinase (JNK) and Akt and decreased the degradation of IκB in RANKL-dependent early signaling pathways. Subsequently, ATWE caused impaired activation of the protein and mRNA levels of c-Fos and nuclear factor of activated T cell c1 (NFATc1). Moreover, the disassembly of filamentous actin (F-actin) ring and anti-resorptive activity of mature osteoclasts were triggered by ATWE treatment. Although ATWE did not enhance osteogenesis in primary osteoblasts, our results showed that ATWE is a potential candidate for anti-resorptive agent in osteoporosis, a common metabolic bone disorder.


2017 ◽  
Vol 45 (02) ◽  
pp. 283-298 ◽  
Author(s):  
Tae Won Rho ◽  
Seo Young Lee ◽  
Sang-Yong Han ◽  
Ji Hoon Kim ◽  
Kyung-Hee Lee ◽  
...  

Osteoporosis results from imbalance between new bone formation and bone resorption leading to bone loss and is especially troublesome for postmenopausal women who suffer from estrogen deficiency. The ability of new therapeutic agents to treat this bone disease with minimal side effects has been extensively reported on and is continuously being sought out by researchers in this field. Thus, the purpose of this study was to investigate a natural herb that was already being used as a new treatment for osteoporosis. Here we found that water extract of Glycyrrhizae radix (GR) inhibits receptor activator of nuclear factor-[Formula: see text]B ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner without causing cytotoxicity. The mRNA expression of c-Fos, nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and osteoclast-associated receptor (OSCAR) was considerably inhibited by GR treatment. GR inhibited RANKL-mediated c-Fos and NFATc1 expression in a dose-dependent manner. GR inhibited the degradation of I-[Formula: see text]B in RANKL-stimulated BMMs. However, GR-mediated inhibition of osteoclast differentiation and osteoclast-specific gene expression, including NFATc1, was reversed by ectopic expression of c-Fos. Also, GR significantly inhibited osteoclast formation in mouse calvariae in the presence of IL-1 and prostaglandin E2 (PGE2). Taken together, these results suggest that GR inhibited osteoclast differentiation, raising the possibility that GR may serve as a useful drug for osteoporosis.


2019 ◽  
Vol 47 (02) ◽  
pp. 439-455 ◽  
Author(s):  
Sang-Yong Han ◽  
Yun-Kyung Kim

Osteoporosis is a common disorder of bone remodeling, marked by excessive osteoclast formation. Recent studies indicated that berberine (BBR) is a potential natural drug for the treatment of various bone diseases. However, it still needs to be further studied for the treatment of osteoporosis. The current study investigated the inhibitory effects of BBR on receptor activator of nuclear factor-[Formula: see text]B ligand (RANKL)-induced osteoclast differentiation in vitro and in vivo. Cell-based assays were performed using osteoclasts generated in cultures of murine bone marrow-derived macrophages (BMMs) treated with RANKL and M-CSF. The effects of BBR on in vivo lipopolysaccharide (LPS)-mediated bone loss were evaluated using ICR mice. BBR significantly inhibited TRAP-positive osteoclast formation induced by RANKL. BBR also inhibited RANKL-induced Akt, p38 and ERK phosphorylation and I[Formula: see text]B degradation, and suppressed RANKL-induced expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which is a key transcription factors for osteoclast formation. BBR reduced the mRNA levels of osteoclast markers, including TRAP, osteoclast-associated receptor (OSCAR), cathepsin K, and ATPase H[Formula: see text] transporting V0 subunit d2 (ATP6v0d2). Moreover, BBR prevented LPS-mediated bone loss in vivo. We suggest BBR as a natural compound that can be a potential therapeutic agent for osteoclast-related bone diseases.


2021 ◽  
Vol 28 (4) ◽  
pp. 297-305
Author(s):  
Min-Kyoung Song ◽  
Suhan Jung ◽  
Seojin Hong ◽  
Jun-Oh Kwon ◽  
Min Kyung Kim ◽  
...  

Background: Protein methylation has important role in regulating diverse cellular responses, including differentiation, by affecting protein activity, stability, and interactions. AZ505 is an inhibitor of the SET and MYND domain-containing protein 2 lysine methylase. In this study, we investigated the effect of AZ505 on osteoblast and osteoclast differentiation in vitro and evaluated the effect of AZ505 in vivo on the long bones in mice.Methods: Osteoblast differentiation was assessed by alkaline phosphatase (ALP) and Alizarin red staining after culturing calvarial preosteoblasts in an osteogenic medium. Osteoclast differentiation was analyzed by tartrate-resistant acid phosphatase (TRAP) staining in bone marrow-derived macrophages cultured with macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). For in vivo experiments, mice were intraperitoneally injected with AZ505 and femurs were examined by micro-computed tomography.Results: AZ505 increased ALP and Alizarin red staining in cultured osteoblasts and the expression of osteoblast marker genes, including Runx2 and osteocalcin. AZ505 resulted in decreased TRAP-staining of osteoclasts and expression of c-Fos and nuclear factor of activated T cells transcription factors and osteoclast marker genes, including cathepsin K and dendritic cell-specific transmembrane protein. Unexpectedly, in vivo administration of AZ505 markedly decreased the trabecular bone mass of femurs. In support of this catabolic result, AZ505 strongly upregulated RANKL expression in osteoblasts.Conclusions: The results indicate that AZ505 has a catabolic effect on bone metabolism in vivo despite its anabolic effect in bone cell cultures. The findings indicate that cell culture data should be extrapolated cautiously to in vivo outcomes for studying bone metabolism.


2018 ◽  
Vol 48 (2) ◽  
pp. 644-656 ◽  
Author(s):  
Cheng-Ming Wei ◽  
Yi-Ji Su ◽  
Xiong Qin ◽  
Jia-Xin Ding ◽  
Qian Liu ◽  
...  

Background/Aims: Extensive osteoclast formation plays a critical role in bone diseases, including rheumatoid arthritis, periodontitis and the aseptic loosening of orthopedic implants. Thus, identification of agents that can suppress osteoclast formation and bone resorption is important for the treatment of these diseases. Monocrotaline (Mon), the major bioactive component of crotalaria sessiliflora has been investigated for its anti-cancer activities. However, the effect of Mon on osteoclast formation and osteolysis is not known. Methods: The bone marrow macrophages (BMMs) were cultured with M-CSF and RANKL followed by Mon treatment. Then the effects of Mon on osteoclast differentiation were evaluated by counting TRAP (+) multinucleated cells. Moreover, effects of Mon on hydroxyapatite resorption activity of mature osteoclast were studied through resorption areas measurement. The involved potential signaling pathways were analyzed by performed Western blotting and quantitative real-time PCR examination. Further, we established a mouse calvarial osteolysis model to measure the osteolysis suppressing effect of Mon in vivo. Results: In this study, we show that Mon can inhibit RANKL-induced osteoclast formation and function in a dose-dependent manner. Mon inhibits the expression of osteoclast marker genes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K. Furthermore, Mon inhibits RANKL-induced the activation of p38 and JNK. Consistent with in vitro results, Mon exhibits protective effects in an in vivo mouse model of LPS-induced calvarial osteolysis. Conclusion: Taken together our data demonstrate that Mon may be a potential prophylactic anti-osteoclastic agent for the treatment of osteolytic diseases caused by excessive osteoclast formation and function.


Sign in / Sign up

Export Citation Format

Share Document