scholarly journals Selenium-Enriched Brushite: A Novel Biomaterial for Potential Use in Bone Tissue Engineering

2018 ◽  
Vol 19 (12) ◽  
pp. 4042 ◽  
Author(s):  
Aleksandra Laskus ◽  
Anna Zgadzaj ◽  
Joanna Kolmas

In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state 1H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.

2021 ◽  
Author(s):  
Lamia Bennabi ◽  
Ilham Abedelemalek ◽  
Abedelkader Ammari ◽  
Khaldia Sediri ◽  
Fatima Bennabi ◽  
...  

Abstract We presents in this work the preparation of several formulations, based on biocompatible biodegradable polymers: polycaprolactone (PCL) and poly(lactic-co-glycolic) acid (PLGA) loaded with Erythromycin (ERYT) antibiotic. These biocompatible materials were used to prepare microspheres with and without immobilized ERYT via simple evaporation method by simple emulsion. The particle size was determined by scanning electron microscopy and the absence of the interaction with ERYT was confirmed via X-ray diffraction and infrared spectroscopy. The release kinetics of ERYT were studied and then, ERYT loaded PCL and PLGA blends microspheres were used for the inhibition of gram-positive S. aureus strain. The microbial activity was carried-out by Agar diffusion disc method. The results show that PCL/PLGA blend and PCL alone inhibited the strain by ERYT present in kinetic aliquots with the complementary effect of the polymers. A numerical model was proposed for modeling the kinetics reported in our study.


Author(s):  
Mojtaba Ansari ◽  
Farzad Malmir ◽  
Amir Salati

The ceramics in the system CaO–MgO–SiO2 has recently attracted a great deal of attention because they display a good in vitro bioactivity and have potential use as bone implants. Biphasic calcium-magnesium-silicate ceramics were prepared by a sol-gel method. The dried gel with chemical composition 3CaO.MgO.2SiO2 was thermally treated at 1200 °C for 2 hrs. The structural behavior of the synthesized ceramics was examined by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Merwinite crystalline phase and akermanite phase were recognized. Then, porous akermanite/merwinite scaffolds were prepared to utilize polymer sponge method and evaluated by employing SEM. Furthermore, bone marrow stromal cells (BMSC) adhesion and proliferation on the scaffolds were evaluated by MTT assay test. Differentiation of the cells was assessed by measuring alkaline phosphatase (ALP) activity. The results demonstrated that BMSC adhered and spread well on akermanite scaffolds and proliferated with the increase in the culture time, and the differentiation rate of osteoblasts on scaffolds was comparable to that on blank culture plate control. Thus, the obtained results presented that the akermanite/merwinite scaffolds deserve attention for bone tissue engineering applications.


Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates (CaP) with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation (HT) of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The initial CB structure was maintained after HT and the scaffold functionalization did not jeopardize the internal structure. The results of in vitro bio-mineralization after immersing the BG coated scaffolds in simulated body fluid (SBF) showed extensive formation of bone-like apatite onto the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties for their use in bone tissue engineering field.


2020 ◽  
Vol 12 ◽  
Author(s):  
Jitendra Naik ◽  
Rutuja Deshmukh ◽  
Rahul Rajput ◽  
Satyendra Mishra ◽  
Mukesh Singh

Background-: Glimepiride is a third generation, oral anti-diabetic sulfonylurea drug; generally recommended for the treatment of type –II diabetes. A biocompatible polymer, Eudragit RS 100 is widely used for the preparation of targeted and time-controlled release of drugs. Glimepiride is encapsulated using Eudragit RS 100 for the sustained release delivery. Objective-: To develop sustained release microparticles of Glimepiride using micro reactor technology to reduce the dosing frequency. Method-: Microreactor precipitation method was used to develop sustained release microparticles of Glimepiride. Plackett-Burman design was employed for the optimization of all the parameters including inner diameter of silicon tubing, flow rate of solvent as well as antisolvent, length of tubing and concentration of polymer etc. Microparticles prepared were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and In vitro drug release as well as release kinetics study. Results-: Placket Burman design was found to be effective for comparing more than two parameters at a time and gives the effect of parameters on design. The parameters A, B, C, D, E and J were synergistically affected the encapsulation efficiency. FE-SEM demonstrated the smooth and spherical nature of particles. Fourier transformed infrared spectroscopy showed the absence of chemical interaction between polymer and drug; X-ray diffraction results showed that the decrease in crystallinity of pure drug when transformed to encapsulated drug loaded microparticles. The sustained drug release was observed for 12 h. Conclusion-: Prepared Glimepiride loaded sustained release microparticles were followed the first order release kinetics. The developed formulation could be reduce dose frequency and improve the patient compliance.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


2013 ◽  
Vol 834-836 ◽  
pp. 531-535
Author(s):  
Li Yan Yang ◽  
Yi Hui Guo ◽  
Li Li Yu ◽  
Jing You

A type of cross-linking starch microsphere (CSMs) has been synthesized via reversed phase suspension method. Crosslinked starch microsphere has good adsorption performance to metal ions in water. The adsorption kinetics of Co (II) on the CSMs, selectivity of adsorption CSMs towards Co (II),Cu (II),Pb (II),Cd (II) and adsorption effects of media towards Co (II) were investigated. The CSMs and its adsorption product were comparatively characterized by X-ray diffraction (XRD). The results showed that The adsorption rate is mainly controlled by liquid film diffusion, and the constant of adsorption rate is 0.0686min-1 at 308K. The crystal structure of the CSMs decreased greatly after the incorporation of Co (II). Co (II) has better adsorption selectivity on CSMs. Ions coexist and other substances in the solution have certain impact on adsorption. Those data are helpful for treatment of the wastewater containing heavy ions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3103
Author(s):  
Laurent Gremillard ◽  
Agnès Mattlet ◽  
Alexandre Mathevon ◽  
Damien Fabrègue ◽  
Bruno Zberg ◽  
...  

Due to growing demand for metal-free dental restorations, dental ceramics, especially dental zirconia, represent an increasing share of the dental implants market. They may offer mechanical performances of the same range as titanium ones. However, their use is still restricted by a lack of confidence in their durability and, in particular, in their ability to resist hydrothermal ageing. In the present study, the ageing kinetics of commercial zirconia dental implants are characterized by X-ray diffraction after accelerated ageing in an autoclave at different temperatures, enabling their extrapolation to body temperature. Measurements of the fracture loads show no effect of hydrothermal ageing even after ageing treatments simulated a 90-year implantation.


Sign in / Sign up

Export Citation Format

Share Document