scholarly journals Molecular Implications of Natriuretic Peptides in the Protection from Hypertension and Target Organ Damage Development

2019 ◽  
Vol 20 (4) ◽  
pp. 798 ◽  
Author(s):  
Speranza Rubattu ◽  
Maurizio Forte ◽  
Simona Marchitti ◽  
Massimo Volpe

The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.

Author(s):  
Federica Nista ◽  
Federico Gatto ◽  
Manuela Albertelli ◽  
Natale Musso

Salt intake is too high for safety nowadays. The main active ion in salt is sodium. The vast majority of scientific evidence points out the importance of sodium restriction for decreasing cardiovascular risk. International Guidelines recommend a large reduction in sodium consumption to help reduce blood pressure, organ damage, and cardiovascular risk. Regulatory authorities across the globe suggest a general restriction of sodium intake to prevent cardiovascular diseases. In spite of this seemingly unanimous consensus, some researchers claim to have evidence of the unhealthy effects of a reduction of sodium intake, and have data to support their claims. Evidence is against dissenting scientists, because prospective, observational, and basic research studies indicate that sodium is the real villain: actual sodium consumption around the globe is far higher than the safe range. Sodium intake is directly related to increased blood pressure, and independently to the enlargement of cardiac mass, with a possible independent role in inducing left ventricular hypertrophy. This may represent the basis of myocardial ischemia, congestive heart failure, and cardiac mortality. Although debated, a high sodium intake may induce initial renal damage and progression in both hypertensive and normotensive subjects. Conversely, there is general agreement about the adverse role of sodium in cerebrovascular disease. These factors point to the possible main role of sodium intake in target organ damage and cardiovascular events including mortality. This review will endeavor to outline the existing evidence.


2010 ◽  
Vol 28 (5) ◽  
pp. 952-958 ◽  
Author(s):  
William D Strain ◽  
Nish Chaturvedi ◽  
Alun Hughes ◽  
Petros Nihoyannopoulos ◽  
Christopher J Bulpitt ◽  
...  

2008 ◽  
Vol 6 (5) ◽  
pp. 731-743 ◽  
Author(s):  
Cesare Cuspidi ◽  
Carla Sala ◽  
Alberto Zanchetti

2010 ◽  
Vol 209 (1) ◽  
pp. 255-260 ◽  
Author(s):  
Vasileios F. Panoulas ◽  
Tracey E. Toms ◽  
Giorgos S. Metsios ◽  
Antonios Stavropoulos-Kalinoglou ◽  
Athanasios Kosovitsas ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Speranza Rubattu ◽  
Rosita Stanzione ◽  
Massimo Volpe

Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension.


2008 ◽  
Vol 294 (2) ◽  
pp. H1058-H1066 ◽  
Author(s):  
Johannes Jacobi ◽  
Renke Maas ◽  
Nada Cordasic ◽  
Kilian Koch ◽  
Roland E. Schmieder ◽  
...  

The aim of the present study was to investigate the role of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH) in angiotensin II (ANG II)-induced hypertension and target organ damage in mice. Mice transgenic for the human DDAH1 gene (TG) and wild-type (WT) mice (each, n = 28) were treated with 1.0 μg·kg−1·min−1 ANG II, 3.0 μg·kg−1·min−1 ANG II, or phosphate-buffered saline over 4 wk via osmotic minipumps. Blood pressure, as measured by tail cuff, was elevated to the same degree in TG and WT mice. Plasma levels of ADMA were lower in TG than WT mice and were not affected after 4 wk by either dose of ANG II in both TG and WT animals. Oxidative stress within the wall of the aorta, measured by fluorescence microscopy using the dye dihydroethidium, was significantly reduced in TG mice. ANG II-induced glomerulosclerosis was similar between WT and TG mice, whereas renal interstitial fibrosis was significantly reduced in TG compared with WT animals. Renal mRNA expression of protein arginine methyltransferase (PRMT)1 and DDAH2 increased during the infusion of ANG II, whereas PRMT3 and endogenous mouse DDAH1 expression remained unaltered. Chronic infusion of ANG II in mice has no effect on the plasma levels of ADMA after 4 wk. However, an overexpression of DDAH1 alleviates ANG II-induced renal interstitial fibrosis and vascular oxidative stress, suggesting a blood pressure-independent effect of ADMA on ANG II-induced target organ damage.


Sign in / Sign up

Export Citation Format

Share Document