scholarly journals Associations between Monocyte and T Cell Cytokine Profiles in Autism Spectrum Disorders: Effects of Dysregulated Innate Immune Responses on Adaptive Responses to Recall Antigens in a Subset of ASD Children

2019 ◽  
Vol 20 (19) ◽  
pp. 4731 ◽  
Author(s):  
Harumi Jyonouchi ◽  
Lee Geng

Changes in monocyte cytokine production with toll like receptor (TLR) agonists in subjects with autism spectrum disorders (ASD) were best reflected by the IL-1β/IL-10 ratios in our previous research. The IL-1β/IL-10 based subgrouping (low, normal, and high) of ASD samples revealed marked differences in microRNA expression, and mitochondrial respiration. However, it is unknown whether the IL-1β/IL-10 ratio based subgrouping is associated with changes in T cell cytokine profiles or monocyte cytokine profiles with non-TLR agonists. In ASD (n = 152) and non-ASD (n = 41) subjects, cytokine production by peripheral blood monocytes (PBMo) with TLR agonists and β-glucan, an inflammasome agonist, and T cell cytokine production by peripheral blood mononuclear cells (PBMCs) with recall antigens (Ags) (food and candida Ags) were concurrently measured. Changes in monocyte cytokine profiles were observed with β-glucan in the IL-1β/IL-10 ratio based ASD subgroups, along with changes in T cell cytokine production and ASD subgroup-specific correlations between T cell and monocyte cytokine production. Non-ASD controls revealed considerably less of such correlations. Altered innate immune responses in a subset of ASD children are not restricted to TLR pathways and correlated with changes in T cell cytokine production. Altered trained immunity may play a role in the above described changes.

2017 ◽  
Vol 114 (42) ◽  
pp. 11205-11210 ◽  
Author(s):  
Landry Blanc ◽  
Martine Gilleron ◽  
Jacques Prandi ◽  
Ok-ryul Song ◽  
Mi-Seon Jang ◽  
...  

Mycobacterium tuberculosisis a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by whichM. tuberculosiscircumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate ofM. tuberculosisof the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified severalM. tuberculosismutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition ofM. tuberculosisby this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used byM. tuberculosisto undermine innate immune defense. Sulfoglycolipids are major and specific lipids ofM. tuberculosis, considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute toM. tuberculosisvirulence.


2020 ◽  
Author(s):  
Srinivasu Mudalagiriyappa ◽  
Jaishree Sharma ◽  
Hazem F. M. Abdelaal ◽  
Thomas C. Kelly ◽  
Woosuk Choi ◽  
...  

AbstractNon-Tuberculous Mycobacteria (NTM) are ubiquitous in nature, present in soil and water, and cause primary leading to disseminated infections in immunocompromised individuals. NTM infections are surging in recent years due to an increase in an immune-suppressed population, medical interventions, and patients with underlying lung diseases. Host regulators of innate immune responses, frontiers for controlling infections and dissemination, are poorly defined during NTM infections. Here, we describe the role of CBLB, an E3-ubiquitin ligase, for innate immune responses and disease progression in a mouse model of NTM infection under compromised T-cell immunity. We found that CBLB thwarted NTM growth and dissemination in a time- and infection route- dependent manner. Mechanistically, we uncovered defects in many innate immune cells in the absence of Cblb, including poor responses of NK cells, inflammatory monocytes, and conventional dendritic cells. Strikingly, Cblb-deficient macrophages were competent to control NTM growth in vitro. Histopathology suggested the lack of early formation of granulomatous inflammation in the absence of CBLB. Collectively, CBLB is essential to mount productive innate immune responses and help prevent the dissemination during an NTM infection under T-cell deficiency.


2019 ◽  
Author(s):  
Duale Ahmed ◽  
David Roy ◽  
Allison Jaworski ◽  
Alex Edwards ◽  
Alfonso Abizaid ◽  
...  

AbstractIncreasing evidence suggests that mitochondria play a critical role in driving innate immune responses against bacteria and viruses. However, it is unclear if differential reprogramming of mitochondrial function contributes to the fine tuning of pathogen specific immune responses. Here, we found that TLR3 and TLR4 engagement on murine bone marrow derived macrophages was associated with differential remodeling of electron transport chain complex expression. This remodeling was associated with differential accumulation of mitochondrial and cytosolic ROS, which were required to support ligand specific inflammatory and antiviral cytokine production. We also found that the magnitude of TLR3, but not TLR4, responses were modulated by glucose availability. Under conditions of low glucose conditions, TLR3 engagement was associated with increased ETC complex III expression, increased mitochondrial and cytosolic ROS and increased inflammatory and antiviral cytokine production. This amplification was selectively reversed by targeting superoxide production from the outer Q-binding site of the ETC complex III. These results suggest that ligand specific modulation of the ETC may act as a rheostat that fine-tunes innate immune responses via mitochondrial ROS production. Modulation of these processes may represent a novel mechanism to modulate the nature as well as the magnitude of antiviral versus inflammatory immune responses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Duale Ahmed ◽  
David Roy ◽  
Allison Jaworski ◽  
Alexander Edwards ◽  
Alfonso Abizaid ◽  
...  

AbstractIncreasing evidence suggests that mitochondria play a critical role in driving innate immune responses against bacteria and viruses. However, it is unclear if differential reprogramming of mitochondrial function contributes to the fine tuning of pathogen specific immune responses. Here, we found that TLR3 and TLR4 engagement on murine bone marrow derived macrophages was associated with differential remodeling of electron transport chain complex expression. This remodeling was associated with differential accumulation of mitochondrial and cytosolic ROS, which were required to support ligand specific inflammatory and antiviral cytokine production. We also found that the magnitude of TLR3, but not TLR4, responses were modulated by glucose availability. Under conditions of low glucose, TLR3 engagement was associated with increased ETC complex III expression, increased mitochondrial and cytosolic ROS and increased inflammatory and antiviral cytokine production. This amplification was selectively reversed by targeting superoxide production from the outer Q-binding site of the ETC complex III. These results suggest that ligand specific modulation of the ETC may act as a rheostat that fine tunes innate immune responses via mitochondrial ROS production. Modulation of these processes may represent a novel mechanism to modulate the nature as well as the magnitude of antiviral vs. inflammatory immune responses.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2222-2222
Author(s):  
Holger Hebart ◽  
Andreas Mickan ◽  
Ziad Haddad ◽  
Juergen Loeffler ◽  
Jean-Paul Latge ◽  
...  

Abstract Appropriate activation of the innate and adaptive immune system is crucial for the successful control of invasive aspergillosis (IA). Acute and chronic graft-versus-host disease as well as corticosteroids were described as major risk factors for the development of IA. In this study, we assessed the impact of immunosuppressive agents (dexamethasone, rapamycin, Cyclosporin A, FK506) on the A. fumigatus induced activation of monocyte-derived immature dendritic cells (iDC) and A. fumigatus-specific T-cell responses in well established cell culture models. Immature DCs were found to be activated and to differentiate into mature DCs in response to A. fumigatus antigens. The upregulation of CD86 was inhibited by dexamethasone (D) in 3 out of 3 experiments, and of CD40 and CD80 in 2/3. CSA and FK506 had a variable impact on the upregulation of CD86, but not on CD40 and CD80, whereas the expression of co-stimulatory molecules was found unchanged upon incubation with rapamycin. Autologous DCs were found to restore A. fumigatus-specific T-cell responses. T-cell proliferation to A. fumigatus hyphae and a cellular extract of the culture filtrate were found to be strongly inhibited by rapamycin and dexamethasone (n=3), whereas the effect of CSA and FK506 (n=3) at the concentrations analysed was variable. The release of IFN-g in culture supernatants upon stimulation with A. fumigatus antigens was strongly reduced in the presence of rapamycin (n=3), whereas the release of IL-4 was found to be increased in the majority of experiments (n=3). Comparable results were observed upon stimulation with tetanus toxoid and a CMV lysate (n=3). These data indicate, that A. fumigatus-spec. T-cell responses may be directed towards a TH2 phenotype in the presence of immunosuppressive agents. In summary, immunosuppressive agents were found to exert differential effects on adaptive and innate immune responses directed against A. fumigatus. Whereas dexamethasone was found to modulate the expression of co-stimulatory molecules on A. fumigatus activated iDCs and to suppress A. fumigatus-specific lymphoproliferation, rapamycin exerted only minor effects on DC-activation but had a strong impact on A. fumigatus-induced T-cell responses. These results may help to tailor immunosuppressive regimens in patients at high risk for invasive aspergillosis.


Sign in / Sign up

Export Citation Format

Share Document