scholarly journals Involvement of Receptor for Advanced Glycation Endproducts in Hypertensive Disorders of Pregnancy

2019 ◽  
Vol 20 (21) ◽  
pp. 5462 ◽  
Author(s):  
Akasaka ◽  
Naruse ◽  
Sado ◽  
Uchiyama ◽  
Makino ◽  
...  

Preeclampsia/hypertensive disorders of pregnancy (PE/HDP) is a serious and potentially life-threatening disease. Recently, PE/HDP has been considered to cause adipose tissue inflammation, but the detailed mechanism remains unknown. We exposed human primary cultured adipocytes with serum from PE/HDP and healthy controls for 24 h, and analyzed mRNA expression of several adipokines, cytokines, and ligands of the receptor for advanced glycation endproducts (RAGE). We found that the mRNA levels of interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), high mobility group box 1 (HMGB1), and RAGE were significantly increased by the addition of PE/HDP serum. Among RAGE ligands, advanced glycation endproducts (AGE) and HMGB1 increased mRNA levels of IL-6 and CCL2 in SW872 human adipocytes and mouse 3T3-L1 cells. The introduction of small interfering RNA for RAGE (siRAGE) into SW872 cells abolished the AGE- and HMGB1-induced up-regulation of IL-6 and CCL2. In addition, lipopolysaccharide (LPS), a ligand of RAGE, increased the expression of IL-6 and CCL2 and siRAGE attenuated the LPS-induced expression of IL-6 and CCL2. These results strongly suggest that the elevated AGE, HMGB1, and LPS in pregnant women up-regulate the expression of IL-6 and CCL2 via the RAGE system, leading to systemic inflammation such as PE/HDP.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 564
Author(s):  
Haruki Watanabe ◽  
Myoungsun Son

The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE’s roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.


2001 ◽  
Vol 152 (6) ◽  
pp. 1197-1206 ◽  
Author(s):  
Bernard Degryse ◽  
Tiziana Bonaldi ◽  
Paola Scaffidi ◽  
Susanne Müller ◽  
Massimo Resnati ◽  
...  

HMG1 (high mobility group 1) is a ubiquitous and abundant chromatin component. However, HMG1 can be secreted by activated macrophages and monocytes, and can act as a mediator of inflammation and endotoxic lethality. Here we document a role of extracellular HMG1 in cell migration. HMG1 (and its individual DNA-binding domains) stimulated migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays. HMG1 induced rapid and transient changes of cell shape, and actin cytoskeleton reorganization leading to an elongated polarized morphology typical of motile cells. These effects were inhibited by antibodies directed against the receptor of advanced glycation endproducts, indicating that the receptor of advanced glycation endproducts is the receptor mediating the HMG1-dependent migratory responses. Pertussis toxin and the mitogen-activated protein kinase kinase inhibitor PD98059 also blocked HMG1-induced rat smooth muscle cell migration, suggesting that a Gi/o protein and mitogen-activated protein kinases are required for the HMG1 signaling pathway. We also show that HMG1 can be released by damage or necrosis of a variety of cell types, including endothelial cells. Thus, HMG1 has all the hallmarks of a molecule that can promote atherosclerosis and restenosis after vascular damage.


2021 ◽  
Vol 11 (5) ◽  
pp. 984-988
Author(s):  
A. Kariminik ◽  
F. Hosseini ◽  
E. Nasiri

Receptor for Advanced Glycation Endproducts (RAGE) is a cell surface receptor, which recognizes several endogenous and exogenous molecules and subsequently induces expression of several molecules including chemokines. Chemokines are members of the cytokine superfamily and participate in several immune system functions, including cell migration, inflammation, angiogenesis/angiostasis etc. CXC ligand 11 (CXCL11) is an important chemokine which participates in the induction of appropriate immune responses against microbes, including bacteria. The main mechanisms responsible to overcome septicemia are yet to be clarified. Thus, it has been hypothesized that RAGE may participate in induction of CXCL11 in response to the microbial agents. Due to the fact that immune responses play key roles in limitation of infection, it has been proposed that RAGE may inhibit spread of septicemia. Therefore, in this project mRNA levels of RAGE and CXCL11 were explored in the patients suffering from septicemia versus healthy controls. RAGE and CXCL11 expression levels in the 80 subjects, including 40 septicemia patients and 40 healthy controls were explored using Real-Time PCR technique. Accordingly, by using the specific primer against RAGE and CXCL11 in a Rotorgene vehicle the mRNA levels have been determined. The septicemia and the sources of the bacteria in the blood were diagnosed using microbial cultures. The results demonstrated that although mRNA levels for RAGE and CXCL11 did not change in the septicemia patients vs. healthy controls, mRNA levels of RAGE were significantly higher in the patients infected by Pseudomonas aeruginosa compared to those infected by other bacteria, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. RAGE and CXCL11 mRNA levels did not differ among male and female patients. Based on the results it seems that RAGE is a critical receptor against P. aeruginosa during septicemia and more investigations, especially on the RAGE down-stream molecules can clarify its main roles against P. aeruginosa.


Author(s):  
Shi Fang Yan ◽  
Ravichandran Ramasamy ◽  
Ann Marie Schmidt

Recent and compelling investigation has expanded our view of the biological settings in which the products of nonenzymatic glycation and oxidation of proteins and lipids – the advanced glycation endproducts (AGEs) – form and accumulate. Beyond diabetes, natural ageing and renal failure, AGEs form in inflammation, oxidative stress and in ischaemia–reperfusion. The chief signal transduction receptor for AGEs – the receptor for AGEs (RAGE) – is a multiligand-binding member of the immunoglobulin superfamily. In addition to AGEs, RAGE binds certain members of the S100/calgranulin family, high-mobility group box 1 (HMGB1), and β-amyloid peptide and β-sheet fibrils. Recent studies demonstrate beneficial effects of RAGE antagonism and genetic deletion in rodent models of atherosclerosis and ischaemia–reperfusion injury in the heart and great vessels. Experimental evidence is accruing that RAGE ligand generation and release during ischaemia–reperfusion may signal through RAGE, thus suggesting that antagonism of this receptor might provide a novel form of therapeutic intervention in heart disease. However, it is plausible that innate, tissue-regenerative roles for these RAGE ligands may also impact the failing heart – perhaps through RAGE and/or distinct receptors. In this review, we focus on RAGE and the consequences of its activation in the cardiovasculature.


Sign in / Sign up

Export Citation Format

Share Document