scholarly journals Identification of MicroRNAs That Respond to Soybean Cyst Nematode Infection in Early Stages in Resistant and Susceptible Soybean Cultivars

2019 ◽  
Vol 20 (22) ◽  
pp. 5634 ◽  
Author(s):  
Piao Lei ◽  
Bing Han ◽  
Yuanyuan Wang ◽  
Xiaofeng Zhu ◽  
Yuanhu Xuan ◽  
...  

Soybean cyst nematode (SCN) causes heavy losses to soybean yield. In order to investigate the roles of soybean miRNAs during the early stages of infection (1 and 5 dpi), 24 small RNA libraries were constructed from SCN resistant cultivar Huipizhi (HPZ) and the susceptible Williams 82 (W82) cultivar for high-throughput sequencing. By sequencing the small RNA libraries, a total of 634 known miRNAs were identified, and 252 novel miRNAs were predicted. Altogether, 14 known miRNAs belonging to 13 families, and 26 novel miRNAs were differentially expressed and may respond to SCN infection in HPZ and W82. Similar expression results were also confirmed by qRT-PCR. Further analysis of the biological processes that these potential target genes of differentially expressed miRNAs regulate found that they may be strongly related to plant–pathogen interactions. Overall, soybean miRNAs experience profound changes in early stages of SCN infection in both HPZ and W82. The findings of this study can provide insight into miRNAome changes in both HPZ and W82 at the early stages of infection, and may provide a stepping stone for future SCN management.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 483 ◽  
Author(s):  
Sun ◽  
Luo ◽  
Chang ◽  
Li ◽  
Zhou ◽  
...  

Fruit expansion is an essential and very complex biological process. Regulatory roles of microRNAs (miRNAs) and miRNA–mRNA modules in the cucumber fruit expansion are not yet to be investigated. In this work, 1253 known and 1269 novel miRNAs were identified from nine cucumber fruit small RNA (sRNA) libraries through high-throughput sequencing. A total of 105 highly differentially expressed miRNAs were recognized in the fruit on five days post anthesis with pollination (EXP_5d) sRNA library. Further, expression patterns of 11 differentially expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR). The expression patterns were similar to sRNAs sequencing data. Transcripts of 1155 sequences were predicted as target genes of differentially expressed miRNAs by degradome sequencing. Gene Ontology (GO) enrichment showed that these target genes were involved in 24 biological processes, 15 cell components and nine molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that these target genes were significantly enriched in 19 pathways and the enriched KEGG pathways were associated with environmental adaptation, signal transduction and translation. Based on the functional prediction of miRNAs and target genes, our findings suggest that miRNAs have a potential regulatory role in cucumber fruit expansion by targeting their target genes, which provide important data for understanding the miRNA-mediated regulatory networks controlling fruit expansion in cucumber. Specific miRNAs could be selected for further functional research and molecular breeding in cucumber.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hai Lan Yao ◽  
Mi Liu ◽  
Wen Jun Wang ◽  
Xin Ling Wang ◽  
Juan Song ◽  
...  

AbstractMicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.


2019 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


Genome ◽  
2021 ◽  
Author(s):  
Ying Luo ◽  
Tao Wang ◽  
Dan Yang ◽  
Biao Luo ◽  
Weiping Wang ◽  
...  

Abstract: MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs that play important roles in abiotic stress responses in plants. but their regulatory roles in the adaptive response to heat stress at the booting stage in two rice varieties 9311 and Nagina 22, remain largely unknown. In this study, 464 known miRNAs and 123 potential novel miRNAs were identified. Of these miRNAs, a total of 90 differential expressed miRNAs were obtained with 9311 libraries as control group, of which 54 upregulated and 36 downregulated miRNAs. To gain insight into functional significance, 2773 potential target genes of these 90 differentially expressed miRNAs were predicted. GO enrichment showed that the predicted target genes of differentially expressed miRNAs including NACs, LACs, CSD, and Hsp40. KEGG pathway analysis showed that target genes of these differentially expressed miRNAs were significantly enriched in plant hormone signal transduction pathway. The expression levels of ten differentially expressed miRNAs and their target genes obtained by qRT-PCR were largely consistent with the sequencing results. This study lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in rice at elevated temperatures. Key words: rice, heat-responsive, microRNA, target gene, booting stage, high-throughput sequencing


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


Genome ◽  
2013 ◽  
Vol 56 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Kuibi Tan ◽  
Jing Chen ◽  
Wuxian Li ◽  
Yuyu Chen ◽  
Weiguo Sui ◽  
...  

The aim of this study was to investigate the differential expression characteristics and the roles of the genome-wide microRNAs (miRNAs) in immunoglobulin A nephropathy (IgAN) kidney tissues. We used Illumina high-throughput sequencing technology to evaluate the miRNAs expression of six biopsy tissues from IgAN and six normal renal cortex specimens from patients with renal cell carcinoma. We observed a total of 85 miRNAs that were differentially expressed in the six IgAN patients, of which 11 miRNAs were up-regulated and 74 miRNAs were down-regulated in patients' tissues compared with control tissues. Additionally, we identified 55 candidate novel miRNAs in our study, which comprised seven candidates who were detected in the IgAN group and 49 candidates who were detected in the control group. Only one candidate (miR-n-9) was expressed in both groups. The bioinformatics showed that the regulated target genes of differentially expressed miRNAs were associated with immune and renal pathological changes. The identification of specific tissue miRNAs in our study not only helped clarify the genetics or immunology mechanisms involved in the pathogenesis of IgAN but also helped explain the pathological changes in the kidney tissues. We hypothesize that some significant miRNAs might potentially serve as novel diagnostic biomarkers in IgAN patients.


2019 ◽  
Vol 20 (12) ◽  
pp. 2966 ◽  
Author(s):  
Weiying Zeng ◽  
Zudong Sun ◽  
Zhenguang Lai ◽  
Shouzhen Yang ◽  
Huaizhu Chen ◽  
...  

Soybean is one of the most important oil crops in the world. Bean pyralid is a major leaf-feeding insect of soybean. In order to screen out the functional genes and regulatory pathways related to the resistance for bean pyralid larvae, the small RNA and transcriptome sequencing were performed based on the highly resistant material (Gantai-2-2) and highly susceptible material (Wan 82-178) of soybean. The results showed that, when comparing 48 h feeding with 0 h feeding, 55 differentially expressed miRNAs were identified in Gantai-2-2 and 58 differentially expressed miRNAs were identified in Wan82-178. When comparing Gantai-2-2 with Wan82-178, 77 differentially expressed miRNAs were identified at 0 h feeding, and 70 differentially expressed miRNAs were identified at 48 h feeding. The pathway analysis of the predicted target genes revealed that the plant hormone signal transduction, RNA transport, protein processing in the endoplasmic reticulum, zeatin biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and isoquinoline alkaloid biosynthesis may play important roles in soybean’s defense against the stress caused by bean pyralid larvae. According to conjoint analysis of the miRNA/mRNA, a total of 20 differentially expressed miRNAs were negatively correlated with 26 differentially expressed target genes. The qRT-PCR analysis verified that the small RNA sequencing results were credible. According to the analyses of the differentially expressed miRNAs, we speculated that miRNAs are more likely to play key roles in the resistance to insects. Gma-miR156q, Gma-miR166u, Gma-miR166b, Gma-miR166j-3p, Gma-miR319d, Gma-miR394a-3p, Gma-miR396e, and so on—as well as their negatively regulated differentially expressed target genes—may be involved in the regulation of soybean resistance to bean pyralid larvae. These results laid a foundation for further in-depth research regarding the action mechanisms of insect resistance.


2019 ◽  
Author(s):  
Renan Gonçalves Silva ◽  
Thiago Mateus-Rosa ◽  
Suzelei de Castro França ◽  
Pratibha Kottapalli ◽  
Kameswara Rao Kottapalli ◽  
...  

AbstractAlthough metallic elements are required for plant growth, aluminum ions (Al+3) can be considered one of the major abiotic factors affecting productivity. In plants, the presence of Al+3 can result in inhibition of root growth triggering water and nutrient deficiency. Plants under stress conditions undergo gene expression changes in specific genes or post-transcriptional gene regulators as miRNAs that can led to resistance. In this study, we investigated the miRNAs involved in the sugarcane response to aluminum stress. Four miRNA libraries were generated using sugarcane roots of two contrasting (tolerant and sensitive) sugarcane cultivars growing under aluminum stress to identify the miRNAs involved in the sugarcane response. Here we present the first miRNAs sequencing of sugarcane response under aluminum stress. The contrast of the cultivars seen in the field was reflected in the micro transcriptome with opposing expression profile. We selected 394 differentially expressed miRNAs, in both cultivars, 22% were common between cultivars. Real time quantitative polymerase chain reaction was used to validate the differentially expressed miRNAs through high-throughput sequencing in sugarcane roots. Target genes prediction was also analyzed. Our results indicated miRNAs that modulated specific target genes involved in roots development and plant aluminum stress response. Those genes can be the answer to tolerance in sugarcane and used in breeding programs to develop tolerant cultivars.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2917
Author(s):  
Qiaoxin Wang ◽  
Xiaohui Li ◽  
Hang Sha ◽  
Xiangzhong Luo ◽  
Guiwei Zou ◽  
...  

Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA is a kind of endogenous non-coding single-stranded small RNA, which is involved in cell development, and immune response and gene expression regulation. In this study, silver carp were kept in the closed containers for hypoxia treatment by spontaneous oxygen consumption. The samples of heart, brain, liver and gill were collected, and the total RNAs extracted separately from the four tissues were mixed in equal amounts according to the concentration. Afterwards, the RNA pool was constructed for high-throughput sequencing, and based on the small RNA sequencing, the differentially expressed microRNAs were identified. Furthermore, their target gene prediction and enrichment analyses were carried out. The results showed that a total of 229 known miRNAs and 391 putative novel miRNAs were identified, which provided valuable resources for further study on the regulatory mechanism of miRNAs in silver carp under hypoxia stress. The authors verified 16 differentially expressed miRNAs by qRT-PCR, and the results were consistent with small RNA sequencing (sRNA-seq). The predicted target genes number of differentially expressed miRNAs was 25,146. GO and KEGG functional enrichment analysis showed that these target genes were mainly involved in the adaption of hypoxia stress in silver carp through biological regulation, catalytic activity and apoptosis. This study provides references for further study of interaction between miRNAs and target genes, and the basic data for the response mechanism under hypoxia stress in silver carp.


Sign in / Sign up

Export Citation Format

Share Document