scholarly journals Deubiquitinating Enzymes in Coronaviruses and Possible Therapeutic Opportunities for COVID-19

2020 ◽  
Vol 21 (10) ◽  
pp. 3492 ◽  
Author(s):  
Valentino Clemente ◽  
Padraig D’Arcy ◽  
Martina Bazzaro

Following the outbreak of novel severe acute respiratory syndrome (SARS)-coronavirus (CoV)2, the majority of nations are struggling with countermeasures to fight infection, prevent spread and improve patient survival. Considering that the pandemic is a recent event, no large clinical trials have been possible and since coronavirus specific drug are not yet available, there is no strong consensus on how to treat the coronavirus disease 2019 (COVID-19) associated viral pneumonia. Coronaviruses code for an important multifunctional enzyme named papain-like protease (PLP), that has many roles in pathogenesis. First, PLP is one of the two viral cysteine proteases, along with 3-chymotripsin-like protease, that is responsible for the production of the replicase proteins required for viral replication. Second, its intrinsic deubiquitinating and deISGylating activities serve to antagonize the host’s immune response that would otherwise hinder infection. Both deubiquitinating and deISGylating functions involve the removal of the small regulatory polypeptides, ubiquitin and ISG15, respectively, from target proteins. Ubiquitin modifications can regulate the innate immune response by affecting regulatory proteins, either by altering their stability via the ubiquitin proteasome pathway or by directly regulating their activity. ISG15 is a ubiquitin-like modifier with pleiotropic effects, typically expressed during the host cell immune response. PLP inhibitors have been evaluated during past coronavirus epidemics, and have showed promising results as an antiviral therapy in vitro. In this review, we recapitulate the roles of PLPs in coronavirus infections, report a list of PLP inhibitors and suggest possible therapeutic strategies for COVID-19 treatment, using both clinical and preclinical drugs.

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Kellie R Machlus ◽  
Prakrith Vijey ◽  
Thomas Soussou ◽  
Joseph E Italiano

Background: Proteasome inhibitors such as bortezomib, a chemotherapeutic used to treat multiple myeloma, induce thrombocytopenia within days of initiation. The mechanism for this thrombocytopenia has been tied to data revealing that proteasome activity is essential for platelet formation. The major pathway of selective protein degradation uses ubiquitin as a marker that targets proteins for proteolysis by the proteasome. This pathway is previously unexplored in megakaryocytes (MKs). Objectives: We aim to define the mechanism by which the ubiquitin-proteasome pathway affects MK maturation and platelet production. Results: Pharmacologic inhibition of proteasome activity blocks proplatelet formation in megakaryocytes. To further characterize how this degradation was occurring, we probed distinct ubiquitin pathways. Inhibition of the ubiquitin-activating enzyme E1 significantly inhibited proplatelet formation up to 73%. In addition, inhibition of the deubiquitinase proteins UCHL5 and USP14 significantly inhibited proplatelet formation up to 83%. These data suggest that an intact ubiquitin pathway is necessary for proplatelet formation. Proteomic and polysome analyses of MKs undergoing proplatelet formation revealed a subset of proteins decreased in proplatelet-producing megakaryocytes, consistent with data showing that protein degradation is necessary for proplatelet formation. Specifically, the centrosome stabilizing proteins Aurora kinase (Aurk) A/B, Tpx2, Cdk1, and Plk1 were decreased in proplatelet-producing MKs. Furthermore, inhibition of AurkA and Plk1, but not Cdk1, significantly inhibited proplatelet formation in vitro over 83%. Conclusions: We hypothesize that proplatelet formation is triggered by centrosome destabilization and disassembly, and that the ubiquitin-proteasome pathway plays a crucial role in this transformation. Specifically, regulation of the AurkA/Plk1/Tpx2 pathway may be key in centrosome integrity and initiation of proplatelet formation. Determination of the mechanism by which the ubiquitin-proteasome pathway regulates the centrosome and facilitates proplatelet formation will allow us to design better strategies to target and reverse thrombocytopenia.


Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 2051-2060 ◽  
Author(s):  
Giovanni Almanzar ◽  
Felix Kienle ◽  
Marc Schmalzing ◽  
Anna Maas ◽  
Hans-Peter Tony ◽  
...  

AbstractObjectiveRA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response.MethodsThe effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro.ResultsTofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed.ConclusionThis study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


2004 ◽  
Vol 24 (1) ◽  
pp. 330-337 ◽  
Author(s):  
Sangwon Kim ◽  
Simon S. Wing ◽  
Prem Ponka

ABSTRACT Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (IRP2), which binds to iron-responsive elements present in untranslated regions of mRNAs for several proteins involved in iron metabolism. In this study, we show that NO causes S-nitrosylation of IRP2, both in vitro and in vivo, and this modification leads to IRP2 ubiquitination followed by its degradation in the proteasome. Moreover, mutation of one cysteine (C178S) prevents NO-mediated degradation of IRP2. Hence, S-nitrosylation is a novel signal for IRP2 degradation via the ubiquitin-proteasome pathway.


2018 ◽  
Vol Volume 10 ◽  
pp. 887-897 ◽  
Author(s):  
Zhaotao Wang ◽  
Guoyong Yu ◽  
Zhi Liu ◽  
Jianwei Zhu ◽  
Chen Chen ◽  
...  

2006 ◽  
Vol 81 (3) ◽  
pp. 1174-1185 ◽  
Author(s):  
Masayuki Shirakura ◽  
Kyoko Murakami ◽  
Tohru Ichimura ◽  
Ryosuke Suzuki ◽  
Tetsu Shimoji ◽  
...  

ABSTRACT Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Edanur Sen ◽  
Krishna P. Kota ◽  
Rekha G. Panchal ◽  
Sina Bavari ◽  
Erkan Kiris

Botulinum neurotoxins (BoNTs) are known as the most potent bacterial toxins, which can cause potentially deadly disease botulism. BoNT Serotype A (BoNT/A) is the most studied serotype as it is responsible for most human botulism cases, and its formulations are extensively utilized in clinics for therapeutic and cosmetic applications. BoNT/A has the longest-lasting effect in neurons compared to other serotypes, and there has been high interest in understanding how BoNT/A manages to escape protein degradation machinery in neurons for months. Recent work demonstrated that an E3 ligase, HECTD2, leads to efficient ubiquitination of the BoNT/A Light Chain (A/LC); however, the dominant activity of a deubiquitinase (DUB), VCIP135, inhibits the degradation of the enzymatic component. Another DUB, USP9X, was also identified as a potential indirect contributor to A/LC degradation. In this study, we screened a focused ubiquitin-proteasome pathway inhibitor library, including VCIP135 and USP9X inhibitors, and identified ten potential lead compounds affecting BoNT/A mediated SNAP-25 cleavage in neurons in pre-intoxication conditions. We then tested the dose-dependent effects of the compounds and their potential toxic effects in cells. A subset of the lead compounds demonstrated efficacy on the stability and ubiquitination of A/LC in cells. Three of the compounds, WP1130 (degrasyn), PR-619, and Celastrol, further demonstrated efficacy against BoNT/A holotoxin in an in vitro post-intoxication model. Excitingly, PR-619 and WP1130 are known inhibitors of VCIP135 and USP9X, respectively. Modulation of BoNT turnover in cells by small molecules can potentially lead to the development of effective countermeasures against botulism.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1636 ◽  
Author(s):  
Chris D. Balak ◽  
Jesse M. Hunter ◽  
Mary E. Ahearn ◽  
David Wiley ◽  
Gennaro D'urso ◽  
...  

Background: X-linked spinal muscular atrophy (XL-SMA) results from mutations in the Ubiquitin-Like Modifier Activating Enzyme 1 (UBA1). Previously, four novel closely clustered mutations have been shown to cause this fatal infantile disorder affecting only males. These mutations, three missense and one synonymous, all lie within Exon15 of the UBA1 gene, which contains the active adenylation domain (AAD). Methods: In this study, our group characterized the three known missense variants in vitro. Using a novel Uba1 assay and other methods, we investigated Uba1 adenylation, thioester, and transthioesterification reactions in vitro to determine possible biochemical effects of the missense variants. Results: Our data revealed that only one of the three XL-SMA missense variants impairs the Ubiquitin-adenylating ability of Uba1. Additionally, these missense variants retained Ubiquitin thioester bond formation and transthioesterification rates equal to that found in the wild type. Conclusions: Our results demonstrate a surprising shift from the likelihood of these XL-SMA mutations playing a damaging role in Uba1’s enzymatic activity with Ubiquitin, to other roles such as altering UBA1 mRNA splicing via the disruption of splicing factor binding sites, similar to a mechanism in traditional SMA, or disrupting binding to other important in vivo binding partners.  These findings help to narrow the search for the areas of possible dysfunction in the Ubiquitin-proteasome pathway that ultimately result in XL-SMA. Moreover, this investigation provides additional critical understanding of the mutations’ biochemical mechanisms, vital for the development of future effective diagnostic assays and therapeutics.


Author(s):  
Giovanni S. Offeddu ◽  
Cynthia Hajal ◽  
Colleen Foley ◽  
Zhengpeng Wan ◽  
Lina Ibrahim ◽  
...  

ABSTRACTThe glycocalyx on tumor cells has been recently identified as an important driver for cancer progression, possibly providing critical opportunities for treatment. Metastasis, in particular, is often the limiting step in the survival to cancer, yet our understanding of how tumor cells escape the vascular system to initiate metastatic sites remains limited. Using an in vitro model of the human microvasculature, we assess here the importance of the tumor and vascular glycocalyces during tumor cell extravasation. Through selective manipulation of individual components of the glycocalyx, we reveal a novel mechanism whereby tumor cells prepare an adhesive vascular niche by depositing components of the glycocalyx along the endothelium. Accumulated hyaluronic acid shed by tumor cells subsequently mediates adhesion to the endothelium via the glycoprotein CD44. Trans-endothelial migration and invasion into the stroma occurs through binding of the isoform CD44v to components of the sub-endothelial extra-cellular matrix. Targeting of the hyaluronic acid-CD44 glycocalyx complex results in significant reduction in the extravasation of tumor cells. These studies provide evidence of tumor cells repurposing the glycocalyx to promote adhesive interactions leading to cancer progression. Such glycocalyx-mediated mechanisms may be therapeutically targeted to hinder metastasis and improve patient survival.


Sign in / Sign up

Export Citation Format

Share Document