scholarly journals Different Oxidation Pathways of 2-Selenouracil and 2-Thiouracil, Natural Components of Transfer RNA

2020 ◽  
Vol 21 (17) ◽  
pp. 5956
Author(s):  
Katarzyna Kulik ◽  
Klaudia Sadowska ◽  
Ewelina Wielgus ◽  
Barbara Pacholczyk-Sienicka ◽  
Elzbieta Sochacka ◽  
...  

Sulfur- and selenium-modified uridines present in the wobble position of transfer RNAs (tRNAs) play an important role in the precise reading of genetic information and tuning of protein biosynthesis in all three domains of life. Both sulfur and selenium chalcogens functionally operate as key elements of biological molecules involved in the protection of cells against oxidative damage. In this work, 2-thiouracil (S2Ura) and 2-selenouracil (Se2Ura) were treated with hydrogen peroxide at 1:0.5, 1:1, and 1:10 molar ratios and at selected pH values ranging from 5 to 8. It was found that Se2Ura was more prone to oxidation than its sulfur analog, and if reacted with H2O2 at a 1:1 or lower molar ratio, it predominantly produced diselenide Ura-Se-Se-Ura, which spontaneously transformed to a previously unknown Se-containing two-ring compound. Its deselenation furnished the major reaction product, a structure not related to any known biological species. Under the same conditions, only a small amount of S2Ura was oxidized to form Ura-SO2H and uracil (Ura). In contrast, 10-fold excess hydrogen peroxide converted Se2Ura and S2Ura into corresponding Ura-SeOnH and Ura-SOnH intermediates, which decomposed with the release of selenium and sulfur oxide(s) to yield Ura as either a predominant or exclusive product, respectively. Our results confirmed significantly different oxidation pathways of 2-selenouracil and 2-thiouracil.

1990 ◽  
Vol 47 (5) ◽  
pp. 888-893 ◽  
Author(s):  
William J. Cooper ◽  
Richard G. Zepp

Hydrogen peroxide decay studies have been conducted in suspensions of several well-characterized soils and in natural water samples. Kinetic and product studies indicated that the decay was biologically-mediated, and could be described by pseudo first-order rate expressions. At an initial H2O2 concentration of 0.5 μM, the hydrogen peroxide half-life varied from 1 to 8 h. The decay was inhibited by thermal and chemical sterilization of the soils. Peroxidase activity was inferred in several natural water samples, where the suspended particles catalyzed the oxidation of p-anisidine by hydrogen peroxide. The mass spectrum of the major reaction product indicated that it was the dimer, possibly benzoquinone-4-methoxyanil, a product that also was observed from the horseradish peroxidase-catalyzed oxidation of p-anisidine by hydrogen peroxide.


2005 ◽  
Vol 24 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Seema Joshi ◽  
M M Husain ◽  
Ramesh Chandra ◽  
S K Hasan ◽  
R C Srivastava

L-histidine, L-cysteine, reduced glutathione (GSH) and other bioligands, which are ubiquitously present in biological systems, are recognized as antioxidants. Studies have shown that nickel (II) complexed with these ligands catalyzes the disproportionation of H2O2, leading to the generation of hydroxyl radicals (OH•). However, none of the studies could provide information regarding effective concentrations at which these ligands act either as pro-oxidant or antioxidant. Therefore, the observed paradoxical behaviour of biological antioxidants in nickel-induced oxidative response was evaluated. Benzoic acid (BA) is hydroxylated by OH• radical to form highly fluorescent dihydroxy benzoate (OH-BA). We used this model to study the effect of nickel complexes of L-histidine, GSH or L-cysteine on the hydroxylation of BA. The concentration-dependent effect of L-histidine, GSH and L-cysteine, or nickel on the hydroxylation of BA was studied. The hydroxylation of BA was significantly enhanced up to 1:0.5 molar ratio (Ni:hist or GSH). However, beyond 1:0.5 molar ratios, histidine/GSH inhibited the hydroxylation and complete inhibition was observed at 1:1 molar ratios. Sorbitol and caffeic acid, considered as scavengers of hydroxyl radicals, inhibited nickel-induced hydroxylation of BA. The present study demonstrates paradoxical behaviour of these bioligands. They act as pro-oxidant at lower ligand ratios and as antioxidant at higher ligand ratios. The redox properties of nickel complexes with histidine, GSH or cysteine reported here may be crucial for the toxicity of nlckel.


Author(s):  
Xuecheng Sun ◽  
Xiaogang Gu ◽  
Shuguang Lyu

Abstract The chlorobenzene (CB) degradation performances by various oxidants, including hydrogen peroxide (H2O2), nanoscale calcium peroxide (nCaO2) and sodium percarbonate (SPC), activated with ferrous iron (Fe(II)) were investigated and thoroughly compared. The results showed that all tested systems had strong abilities to degrade CB. The CB removal rate increased with increasing dosages of oxidants or Fe(II) because the generation of reactive oxygen species could be promoted with the chemical dosages' increase. Response surface and contour plots showed that CB could achieve a better removal performance at the same H2O2 and Fe(II) molar content, but the Fe(II) dosage was higher than that of oxidants in the nCaO2 and SPC systems. The optimal molar ratios of H2O2/Fe(II)/CB, nCaO2/Fe(II)/CB and SPC /Fe(II)/CB were 5.2/7.6/1, 8/8/1, and 4.5/8/1, respectively, in which 98.1%, 98%, and 96.4% CB removals could be obtained in 30 min reaction. The optimal pH condition was around 3, while CB removal rates were less than 20% in all three systems when the initial pH was adjusted to 9. The oxidative hydroxyl radicals (HO•) and singlet oxygen (1O2) had been detected by the electron paramagnetic resonance test. Based upon the results of liquid chromatograph-mass spectrometer analysis, the pathways of CB degradation were proposed, in which 1O2 roles were elaborated innovatively in the CB degradation mechanism. The CB degradation performance was significantly affected in actual groundwater, while increasing the molar ratio of oxidant/Fe(II)/CB was an effective way to overcome the adverse effects caused by the complex of actual groundwater matrix.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Sonam Goyal ◽  
Maizatul Shima Shaharun ◽  
Ganaga Suriya Jayabal ◽  
Chong Fai Kait ◽  
Bawadi Abdullah ◽  
...  

A set of novel photocatalysts, i.e., copper-zirconia imidazolate (CuZrIm) frameworks, were synthesized using different zirconia molar ratios (i.e., 0.5, 1, and 1.5 mmol). The photoreduction process of CO2 to methanol in a continuous-flow stirred photoreactor at pressure and temperature of 1 atm and 25 °C, respectively, was studied. The physicochemical properties of the synthesized catalysts were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The highest methanol activity of 818.59 µmol/L.g was recorded when the CuZrIm1 catalyst with Cu/Zr/Im/NH4OH molar ratio of 2:1:4:2 (mmol/mmol/mmol/M) was employed. The enhanced yield is attributed to the presence of Cu2+ oxidation state and the uniformly dispersed active metals. The response surface methodology (RSM) was used to optimize the reaction parameters. The predicted results agreed well with the experimental ones with the correlation coefficient (R2) of 0.99. The optimization results showed that the highest methanol activity of 1054 µmol/L.g was recorded when the optimum parameters were employed, i.e., stirring rate (540 rpm), intensity of light (275 W/m2) and photocatalyst loading (1.3 g/L). The redox potential value for the CuZrIm1 shows that the reduction potential is −1.70 V and the oxidation potential is +1.28 V for the photoreduction of CO2 to methanol. The current work has established the potential utilization of the imidazolate framework as catalyst support for the photoreduction of CO2 to methanol.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3317
Author(s):  
Maria Carolina Pereira Gonçalves ◽  
Jéssica Cristina Amaral ◽  
Roberto Fernandez-Lafuente ◽  
Ruy de Sousa Junior ◽  
Paulo Waldir Tardioli

In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.


1963 ◽  
Vol 41 (6) ◽  
pp. 1606-1611 ◽  
Author(s):  
Hans Helmut Baer ◽  
Frank Kienzle

The steric course of the nitromethane cyclization of L′-methoxy-D-hydroxymethyldiglycolic aldehyde was investigated. Methyl 3-nitro-3-deoxy-β-D-galactopyranoside was shown to arise as a second major reaction product in addition to the previously isolated principal stereoisomer, the gluco derivative. The corresponding manno stereoisomer is formed to a smaller extent. The configurations of the new methyl nitrodeoxyglycosides were established by conversion into the corresponding amino derivatives and hydrolysis of these latter to the known 3-amino-3-deoxy-D-galactose and -D-mannose hydrochlorides. All the products were obtained in a crystalline state. The reaction lends itself to a facile preparation of the nitrogenous galactose derivatives.


Holzforschung ◽  
2014 ◽  
Vol 68 (4) ◽  
pp. 477-486 ◽  
Author(s):  
Myung Jae Lee ◽  
Sedric Pankras ◽  
Paul Cooper

Abstract Canadian refractory wood species treated with micronized copper (MCu) wood preservative become mottled and streaky in appearance. To overcome this issue, the MCu system was modified by adding small amounts of monoethanolamine (Mea). The modified systems were evaluated to clarify the role of Mea in terms of leaching, corrosion, and mold resistance of MCu systems. The mottled and streaky surface on treated spruce was prevented at Mea/Cu molar ratios between 0.7 and 1.5. Copper leaching remained modest and was only slightly higher than that of MCu alone up to a Mea/Cu molar ratio of 1.2. However, adding even a small amount of Mea to the MCu formulation increased fastener corrosion compared with MCu. Protonated Mea increased as more Mea was added and was identified as the main corrosion-causing electrolyte in the system.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 32319-32327 ◽  
Author(s):  
Chun-Chieh Han ◽  
Yu-Chaing Chou ◽  
San-Yuan Chen ◽  
Hong-Cheu Lin

The molar ratio, alkyl chain length, lateral fluoro-substitution and the chiral center of H-bonded bent-core supramolecules would affect the BP ranges of BPLC complexes. H-bonded bent-core complex PIIIC9/AIIF* (3/7 mol mol−1) displayed the widest BPI range of ΔTBPI = 12 °C.


2015 ◽  
Vol 17 (4) ◽  
pp. 23-31 ◽  
Author(s):  
Agnieszka Wróblewska ◽  
Edyta Makuch ◽  
Małgorzata Dzięcioł ◽  
Roman Jędrzejewski ◽  
Paweł Kochmański ◽  
...  

Abstract This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide) and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol%) at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol%) at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.


2013 ◽  
Vol 5 (2) ◽  
pp. 1845-1870 ◽  
Author(s):  
P. Lübcke ◽  
N. Bobrowski ◽  
S. Arellano ◽  
B. Galle ◽  
G. Garzón ◽  
...  

Abstract. The molar ratio of BrO to SO2 is, like other halogen/sulphur ratios, a~possible precursor for dynamic changes in the shallow part of a volcanic system. While the predictive significance of the BrO/SO2 ratio has not been well constrained yet, it has the major advantage that this ratio can be readily measured using the remote-sensing technique Differential Optical Absorption Spectroscopy (DOAS) in the UV. While BrO/SO2 ratios have been measured during several short-term field campaigns this article presents an algorithm that can be used to obtain long-term time series of BrO/SO2 ratios from the scanning DOAS instruments of the Network for Observation of Volcanic and Atmospheric Change (NOVAC) or comparable networks. Parameters of the DOAS retrieval of both trace gases are given and the influence of co-adding spectra on the retrieval error will be investigated. Difficulties in the evaluation of spectroscopic data from monitoring instruments in volcanic environments and possible solutions are discussed. The new algorithm is demonstrated by evaluating data from the NOVAC scanning DOAS systems at Nevado del Ruiz, Colombia encompassing almost four years of measurements between November 2009 and end of June 2013. This dataset shows variations of the BrO/SO2 ratio several weeks prior to the eruption on 30 June 2012.


Sign in / Sign up

Export Citation Format

Share Document