scholarly journals Lipid Stores and Lipid Metabolism Associated Gene Expression in Porcine and Bovine Parthenogenetic Embryos Revealed by Fluorescent Staining and RNA-seq

2020 ◽  
Vol 21 (18) ◽  
pp. 6488
Author(s):  
Arkadiusz Kajdasz ◽  
Ewelina Warzych ◽  
Natalia Derebecka ◽  
Zofia E. Madeja ◽  
Dorota Lechniak ◽  
...  

Compared to other mammalian species, porcine oocytes and embryos are characterized by large amounts of lipids stored mainly in the form of droplets in the cytoplasm. The amount and the morphology of lipid droplets (LD) change throughout the preimplantation development, however, relatively little is known about expression of genes involved in lipid metabolism of early embryos. We compared porcine and bovine blastocyst stage embryos as well as dissected inner cell mass (ICM) and trophoblast (TE) cell populations with regard to lipid droplet storage and expression of genes functionally annotated to selected lipid gene ontology terms using RNA-seq. Comparing the number and the volume occupied by LD between bovine and porcine blastocysts, we have found significant differences both at the level of single embryo and a single blastomere. Aside from different lipid content, we found that embryos regulate the lipid metabolism differentially at the gene expression level. Out of 125 genes, we found 73 to be differentially expressed between entire porcine and bovine blastocyst, and 36 and 51 to be divergent between ICM and TE cell lines. We noticed significant involvement of cholesterol and ganglioside metabolism in preimplantation embryos, as well as a possible shift towards glucose, rather than pyruvate dependence in bovine embryos. A number of genes like DGAT1, CD36 or NR1H3 may serve as lipid associated markers indicating distinct regulatory mechanisms, while upregulated PLIN2, APOA1, SOAT1 indicate significant function during blastocyst formation and cell differentiation in both models.

2019 ◽  
Vol 31 (4) ◽  
pp. 724 ◽  
Author(s):  
M. Lim ◽  
H. M. Brown ◽  
K. L. Kind ◽  
J. Breen ◽  
M. R. Anastasi ◽  
...  

Haemoglobin expression is not restricted to erythroid cells. We investigated the gene expression of the haemoglobin subunits haemoglobin, alpha adult chain 1 (Hba-a1) and haemoglobin, beta (Hbb), 2,3-bisphosphoglycerate mutase (Bpgm) and the oxygen-regulated genes BCL2/adenovirus E1B interacting protein 3 (Bnip3), solute carrier family 2 (facilitated glucose transporter), member 1 (Slc2a1) and N-myc downstream regulated gene 1 (Ndrg1) in the murine preimplantation embryo, comparing invivo to invitro gene expression. Relatively high levels of Hba-a1 and Hbb were expressed invivo from the 2-cell to blastocyst stage; in contrast, little or no expression occurred invitro. We hypothesised that the presence of haemoglobin invivo creates a low oxygen environment to induce oxygen-regulated gene expression, supported by high expression of Slc2a1 and Ndrg1 in invivo relative to invitro embryos. In addition, analysis of an invitro-derived human embryo gene expression public dataset revealed low expression of haemoglobin subunit alpha (HBA) and HBB, and high expression of BPGM. To explore whether there was a developmental stage-specific effect of haemoglobin, we added exogenous haemoglobin either up to the 4-cell stage or throughout development to the blastocyst stage, but observed no difference in blastocyst rate or the inner cell mass to trophectoderm cell ratio. We conclude that haemoglobin in the invivo preimplantation embryo raises an interesting premise of potential mechanisms for oxygen regulation, which may influence oxygen-regulated gene expression.


Author(s):  
Yan Shi ◽  
Panpan Zhao ◽  
Yanna Dang ◽  
Shuang Li ◽  
Lei Luo ◽  
...  

Abstract Upon fertilization, extensive chromatin reprogramming occurs during preimplantation development. Growing evidence reveals species-dependent regulations of this process in mammals. ATP-dependent chromatin remodeling factor SMARCA5 (also known as SNF2H) is required for peri-implantation development in mice. However, the specific functional role of SMARCA5 in preimplantation development and if it is conserved among species remain unclear. Herein, comparative analysis of public RNA-seq datasets reveals that SMARCA5 is universally expressed during oocyte maturation and preimplantation development in mice, cattle, humans and pigs with species-specific patterns. Immunostaining analysis further describes the temporal and spatial changes of SMARCA5 in both mouse and bovine models. siRNA-mediated SMARCA5 depletion reduces the developmental capability and compromises the specification and differentiation of inner cell mass in mouse preimplantation embryos. Indeed, OCT4 is not restricted into the inner cell mass and the formation of epiblast and primitive endoderm disturbed with reduced NANOG and SOX17 in SMARCA5-deficient blastocysts. RNA-seq analysis shows SMARCA5 depletion causes limited effects on the transcriptomics at the morula stage, however, dysregulates 402 genes, including genes involved in transcription regulation and cell proliferation at the blastocyst stage in mice. By comparison, SMARCA5 depletion does not affect the development through the blastocyst stage but significantly compromises the blastocyst quality in cattle. Primitive endoderm formation is greatly disrupted with reduced GATA6 in bovine blastocysts. Overall, our studies demonstrate the importance of SMARCA5 in fostering the preimplantation development in mice and cattle while there are species-specific effects.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Eszter Posfai ◽  
Sophie Petropoulos ◽  
Flavia Regina Oliveira de Barros ◽  
John Paul Schell ◽  
Igor Jurisica ◽  
...  

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.


2012 ◽  
Vol 24 (1) ◽  
pp. 183 ◽  
Author(s):  
J. Teson ◽  
K. Lee ◽  
L. Spate ◽  
R. S. Prather

One of the key regulators of gene expression in mammals is DNA methylation. The Tet family (Tet1–3) is suggested to be involved in regulating the level of methylation by hydroxylating a methyl group from 5-methylcytosine to form 5-hydroxymethylcystosine. This hydroxylation alters the 3-dimensional structure of the DNA and results in altered gene expression. Previous studies conducted in the mouse have shown that Tet1 is important for inner cell mass specification by regulating the apparent level of methylation on a specific promoter region in blastocysts and Tet3 is related to the apparent paternal DNA demethylation after fertilization by hydroxylating the paternal genome. The objective of this study was to investigate the expression profile of the Tet family in porcine oocytes and pre-implantation-stage embryos derived from IVF and somatic cell nuclear transfer (SCNT). The RNA was isolated from donor cells, germinal vesicle (GV), MII and 2-cell and blastocyst stage embryos (20 oocytes or embryos per group). Levels of mRNA for each Tet gene were measured by quantitative real-time RT-PCR. The levels of each mRNA transcript were compared to YWHAG, a housekeeping gene that shows a constant level of expression throughout pre-implantation embryo development and normalized to the GV stage. The analysis was repeated with 3 biological replications and 2 experimental replications. Differences in gene expression were compared by ANOVA and P < 0.05 was considered significant. No difference was found in the levels of the Tet family members between GV and MII stage oocytes. Compared with GV stage oocytes, up-regulation of Tet3 at the 2-cell stage was detected in both IVF and SCNT embryos, 4.7 and 6.2 fold, respectively. A dramatic increase in Tet1 was also observed at the blastocyst stage in IVF and SCNT embryos when compared with the GV stage, 65.7 and 79.7 fold increases, respectively. Interestingly, the level of Tet3 was down-regulated in blastocyst embryos at a 25 or more fold decrease compared with GV. The level of Tet2 remained constant throughout embryo development. Embryos (2-cell and blastocyst) compared from IVF and SCNT showed no difference in Tet expression levels. Donor cells had significantly lower levels of Tet2 and Tet3 when compared with GV. Our results indicate that the Tet family shows a dynamic expression profile during porcine pre-implantation embryo development. High expression of Tet3 in 2-cell stage embryos suggests its importance during the post-activation demethylation process. The increase of Tet1 transcript in blastocysts suggests that Tet1 is involved in regulating the type of methylation at the blastocyst stage. These results are consistent with results from previous mouse studies. There was no misregulated expression of the Tet family in SCNT embryos compared with IVF embryos, thus indicating successful reprogramming of the Tet family after SCNT. Lower levels of Tet2 and Tet3 would indicate that Tet1 is important for maintaining type of methylation in donor cells. This is the first report on the profile of the Tet family during porcine pre-implantation embryo development and further studies are needed to clarify their role during this stage.


2012 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Manabu Ozawa ◽  
Miki Sakatani ◽  
JiQiang Yao ◽  
Savita Shanker ◽  
Fahong Yu ◽  
...  

Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Gnanaratnam Giritharan ◽  
Said Talbi ◽  
Annemarie Donjacour ◽  
Francesca Di Sebastiano ◽  
Anthony T Dobson ◽  
...  

In vitro culture (IVC) of preimplantation mouse embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared gene expression and development of mouse blastocysts produced by in vitro fertilization (IVF) versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC) versus control blastocysts flushed out of the uterus on post coital day 3.5. The global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. It appears that each method of fertilization has a unique pattern of gene expression and development. Embryos cultured in vitro had a reduction in the number of trophoblastic cells (IVF 33.5 cells, IVC 39.9 cells, and 49.6 cells in the in vivo group) and, to a lesser degree, of inner cell mass cells (12.8, 11.7, and 13.8 respectively). The inner cell mass nuclei were larger after culture in vitro (140 μm2, 113 μm2, and 86 μm2 respectively). Although a high number of genes (1912) was statistically different in the IVF cohort when compared with the in vivo control embryos, the magnitude of the changes in gene expression were low and only a minority of genes (29 genes) was changed more than fourfold. Surprisingly, IVF embryos were different from IVC embryos (3058 genes were statistically different, but only three changed more than fourfold). Proliferation, apoptosis, and morphogenetic pathways are the most common pathways altered after IVC. Overall, IVF and embryo culture have a profound effect on gene expression pattern and phenotype of mouse preimplantation embryos.


Reproduction ◽  
2003 ◽  
pp. 161-169 ◽  
Author(s):  
GA Thouas ◽  
GM Jones ◽  
AO Trounson

A novel system of in vitro culture termed the 'glass oviduct' or 'GO' culture system is described. Mouse zygotes were cultured in pairs to the blastocyst stage in open-ended 1 microl glass capillaries. 'GO' culture supported the development of significantly more hatching or hatched blastocysts than did a standard microdroplet (10 zygotes per 20 microl) control culture (48.3 versus 3.3%, respectively). 'GO' bslastocysts contained significantly larger populations of cells (92+/-3 versus 75+/-3), and inner cell mass (25+/-1 versus 21+/-1) and trophectoderm (68+/-2 versus 53+/-3) subpopulations, compared with microdroplet-derived blastocysts. Before blastulation, 'GO'-derived morulae were found to contain significantly more cells than microdroplet-derived morulae (27+/-0.7 versus 14+/-0.5). After implantation, 'GO' blastocysts formed fetuses at a similar rate to microdroplet-derived blastocysts (55 versus 62%), but at a lower rate than blastocysts derived in vivo (80%). 'GO'- and microdroplet-derived fetuses were similar in wet weight to each other (0.412 and 0.415 g, respectively) but were heavier than fetuses derived from flushed blastocysts (0.390 g). An additional experiment investigated whether the beneficial effect of 'GO' culture was due to the significantly increased embryo density. Proportions of hatching or hatched blastocysts after 'GO' culture (50%) were higher than after standard microdroplet culture (7.6%), but were not different from culture in high embryo density microdroplets (20 zygotes per 10 microl; 42%). 'GO' blastocysts contained more cells (79.6+/-2.1) than did standard microdroplet-derived blastocysts (68.7+/-2.0), but were similar to high density microdroplet-derived blastocysts (85.8+/-2.7). Similarly, 'GO' blastocysts contained more trophectoderm cells (62.2+/-2.0) than did standard microdroplet-derived blastocysts (52.7+/-1.7), but were similar to the high density microdroplet blastocysts (68.8+/-2.5). Numbers of inner cell mass cells ('GO', standard microdroplet and high density microdroplet culture) were not different from each other (17.4+/-0.5, 16+/-0.5 and 17+/-0.4, respectively). In conclusion, the 'GO' culture system represents an alternative method to the microdroplet system for small numbers of preimplantation embryos, without detriment to implantation potential.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 4105-4116 ◽  
Author(s):  
Kazuhiro Kawamura ◽  
Jun Fukuda ◽  
Jin Kumagai ◽  
Yasushi Shimizu ◽  
Hideya Kodama ◽  
...  

Abstract Both GnRH-I and its receptor (GnRHR)-I have been shown to be expressed in the mammalian preimplantation embryo. In this study, we investigated the molecular mechanisms of GnRH-I in the regulation of early embryonic development in mouse. We found that GnRH-I and GnRHR-I mRNAs were detectable throughout early embryonic stages and that expression levels of both increased significantly after the early blastocyst stage. In blastocysts, GnRH-I and GnRHR-I expression was detected in both inner cell mass and trophectoderm cells. The pregnant uterus also expressed both genes, suggesting that preimplantation embryos could be affected by GnRH through both paracrine and autocrine signaling. Treatment with GnRH-I agonist, buserelin, promoted development of two-cell-stage embryos to the expanded and hatched blastocyst stages and inhibited apoptosis in a dose-dependent manner. In contrast, treatment with GnRH-I antagonist, ganirelix acetate, inhibited development of preimplantation embryos beyond the expanded blastocyst stage and induced apoptosis; both effects could be reversed by cotreatment with GnRH-I agonist. GnRH-I antagonist-induced cell death was mediated by disruption of mitochondrial function, release of cytochrome c, and activation of caspase-3. Furthermore, treatment with GnRH-I antagonist decreased expression of two antiapoptotic growth factors, epidermal growth factor and IGF-II, in blastocysts. These results indicate that GnRH-I, acting as an antiapoptotic factor, is an important growth factor in development of mouse blastocysts.


Reproduction ◽  
2003 ◽  
pp. 91-99 ◽  
Author(s):  
R Augustin ◽  
P Pocar ◽  
C Wrenzycki ◽  
H Niemann ◽  
B Fischer

Insulin improves development of mammalian preimplantation embryos and, in addition to the regulation of glucose transport, it exerts mitogenic and anti-apoptotic activities. The expression of glucose transporters (Glut) mediating the uptake of this essential energy substrate is critical for embryo survival. An impaired expression of Glut leads to an increase in apoptosis at the blastocyst stage and involves Bax. The various effects of insulin were unravelled by supplementing the in vitro culture medium with insulin (1.7 micromol l(-1)) and (i) the rates of cleavage and blastocyst development were recorded; (ii) mitogenic activity was studied by determining the total number of blastocyst cells and the ratio between trophectoderm and inner cell mass (ICM) cells; (iii) the frequency of apoptosis in blastocysts was determined by the TdT-mediated duTP nick-end labelling (TUNEL) assay and by quantification of the relative amounts of mRNA for Bax and Bcl-XL; and (iv) expression for Glut1, Glut3 and Glut8 transcripts was compared between embryos cultured in the presence or absence of insulin. Insulin increased rates of cleavage (81.2+/-2.2 (control) to 86.0+/-2.5) and blastocyst development (24.7+/-1.9 to 31.3+/-1.2), and number of blastocyst cells (123.7+/-6.0 to 146.3+/-6.6); the increase in the number of blastocyst cells was due to a significantly higher number of trophectoderm cells (82.3+/-5.0 versus 100.3+/-5.5). Blastocysts derived from cultures supplemented with insulin showed a significant decrease in apoptosis as determined by the TUNEL assay (14.8+/-0.9 to 12.2+/-0.7). No effects of insulin on the mRNA expression of Glut isoforms and Bax and Bcl-XL were found. These results demonstrate that the mitogenic and anti-apoptotic effects of insulin on bovine preimplantation embryos did not correlate with changes in the amounts of mRNA for the glucose transporter isoforms Glut1, -3 and -8, or transcripts for Bax and Bcl-XL.


2004 ◽  
Vol 16 (7) ◽  
pp. 665 ◽  
Author(s):  
A. J. Harvey ◽  
K. L. Kind ◽  
J. G. Thompson

In cattle embryos, development to the blastocyst stage is improved in the presence of 10 μm 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation, coincident with an increase in glycolytic activity following embryonic genome activation. The present study examined redox-sensitive gene expression and embryo development in response to the addition of DNP post-compaction. 2,4-Dinitrophenol increased the expression of hypoxia-inducible factor 1α and 2α (HIF1α, HIF2α) mRNA. Although HIF1α protein remained undetectable in bovine blastocysts, HIF2α protein was localised within the nucleus of trophectoderm and inner cell mass (ICM) cells of blastocysts cultured in the presence or absence of DNP, with a slight increase in staining evident within the ICM in blastocysts cultured in the presence of DNP. However, the expression of GLUT1 and VEGF mRNA, genes known to be regulated by HIFs, was unaffected by the addition of DNP to the culture. Although the development of Grade 1 and 2 blastocysts was unaltered by the addition of DNP post compaction in the present study, a significant increase in the proportion of ICM cells was observed. Results indicate that 10 μm DNP improves the quality of bovine embryos, coincident with increased HIF2α protein localisation within ICM cells and increased HIFα mRNA levels. Therefore, the results demonstrate redox-regulated expression of HIF2.


Sign in / Sign up

Export Citation Format

Share Document